Измерение ксв. Коэффициент стоячей волны по напряжению (ксвн, vswr)

Вы стали счастливым обладателем портативной или автомобильной радиостанции? Теперь настал черед подготовить рацию к работе. Механическая часть работы, описанная производителем в инструкции, не вызывает проблем - для этого нужен минимальный набор инструментов и немного сообразительности. А вот с настройкой антенны не все так просто.

Если, следуя схеме, механически соединить провода, то, скорее всего, вас не будет слышно. Начинаем разбираться, и возникает вопрос: что такое коэффициент стоячей волны антенны, или SWR, если инструкция на английском.

Это коэффициент, который показывает, какая часть энергии радиоволны уходит на антенну, а какая часть возвращается назад в фидер. Без правильной настройки КСВ ваша рация не будет работать корректно и не обеспечит комфортного общения.

Коэффициент стоячей волны антенны

Если совсем просто, то это цифра на измерительном приборе, характеризующая правильность настроек вашей радиостанции. Разберемся в физической сути КСВ.

Радиоволны распространяются в волноводе - антенно-фидерном тракте. То есть сигнал, поступающий от передатчика, попадается на антенну посредством кабельного соединения-фидера. Не вникая в теорию волн, пользователю радиостанции нужно понимать, что в любом волноводе присутствуют падающие и отраженные волны. Падающие волны поступают непосредственно на антенну, а отраженные возвращаются назад в фидер и ничем, кроме обогрева окружающей атмосферы, не занимаются. Все волны имеют свойство складываться. В результате сложения амплитуд отраженных и падающих волн создает неравномерное поле по всей длине фидера-кабеля. Таким образом формируются обратные потери КСВ. Чем их больше, тем слабее сигнал вашей радиостанции и тем хуже вас будут слышать абоненты.

Специалисты различают коэффициенты стоячих волн по напряжению (КСВН) и по мощности (КСВ). Практически эти понятия настольно взаимосвязаны, что для пользователя, производящего настройку своей радиостанции, разницы нет никакой.

Коэффициент стоячей волны: формула расчета

Коэффициент KSV при настройке радиостанции не рассчитывается по формулам, а определяется с помощью специального прибора. Что такое КСВ метр? Это несложное для пользователя электронное устройство, которое показывает разницу амплитуд колебаний, а это и есть коэффициент стоячей волны.

Формула КСВ расчета не самая сложная:

КСВ = Umax/Umin

В ней в числителе и знаменателе максимальные и минимальные амплитуды:

  • Umax - сумма мощностей падающей и отраженной волны;
  • Umin - разнице между модностью падающего и отраженного сигнала.

Несложно сделать вывод, что при равенстве Umax и Umin КСВ будет равен единице и это идеальные условия для эффективной работы вашей радиостанции. Но, поскольку идеальных условий в природе не существует, то при настройке КСВ антенны вам придется постараться подтянуть КСВ к единице.

Что может быть причиной повышенного КСВ? Факторов множество:

  • волновое сопротивление кабеля и источника радиосигнала;
  • некорректная спайка, неоднородность волноводов;
  • некачественная разделка кабеля в мочках разъемов;
  • переходники;
  • повышенное сопротивление в месте соединения кабеля с антенной;
  • некачественная сборка передатчика и КСВН антенны.

Если не вдаваться в формулы расчета КСВ, которые для владельца автомобильной радиостанции представляют мало интереса, то перейдем к практическому аспекту настройки антенны.

Как измерить КСВ

Прежде всего, вам нужен КСВ-метр. Его можно купить или взять в аренду. Затем:

  • включите рацию и установите ее переключатель в положение SWR;
  • нажмите передачу на тангенте и регулятором КСВ-метра выведите стрелку на максимум;
  • щелкните REF и снова нажмите на тангенту;
  • посмотрите, что показывает стрелочка на шкале SWR - это и есть ваш КСВ.

Он, конечно же, будет далек от идеала-единицы, но зато вам есть теперь чем заняться. Кстати, при показателе в пределах:

  • 1,1-1,5 работать можно;
  • 1,5-2,5 - в принципе удовлетворительно;
  • больше 2,5 - нужно поработать.

Что делать? Это предмет отдельной большой статьи или повод обратиться к мастеру, знающему, что такое КСВ и как с ним работать.

Купить прибор для определения КСВ вы можете прямо сейчас на нашем сайте. В каталоге вашему вниманию представлены профессиональные и любительские модификации брендов VEGA и Optim, которые можно использовать не только при установке антенны, но и для постоянного мониторинга работы радиостанции.

Произвольная нагрузка в общем случае порождает в линии передачи отраженную волну. Накладываясь на падающую, отраженная волна приводит к образованию повторяющихся максимумов и минимумов в продольных распределениях нормированных токов и напряжений, формируя картину смешанных волн. Режим смешанных волн в инженерной практике принято характеризовать коэффициентом бегущей волны (КБВ), представляющим собой отношение минимального значения нормированного полного напряжения (или тока, или напряженности) в линии к максимальному значению полного напряжения (или тока, или напряженности поля) в линии

где |Г| - модуль коэффициента отражения. Часто вместо КБВ пользуются обратной ему величиной, называемой коэффициентом стоячей волны (КСВ)

Коэффициентом отражения называется отношение поперечных компонентов электрического поля для падающей и отраженной волн в одной и той же точке поперечного сечения линии передачи

где Z A – входное сопротивление антенны,

Z В – волновое сопротивление линии передачи (коаксиального кабеля). Зависимость входного сопротивления от частоты рассчитана в предыдущем пункте.

По методу излучаемой мощности получаем

По методу наведенных ЭДС получаем


График зависимости КСВ от длины волны приведен в приложении В.

2.8 Расчет ппф и его ачх

Фильтры СВЧ применяют для частотной селекции сигналов, согласования комплексных нагрузок, в цепях задержки и в качестве замедляющих систем.

Фильтры являются обычно пассивными взаимными устройствами и характеризуются частотной зависимостью вносимого в тракт затухания. Полоса частот с малым затуханием называется полосой пропускания, а полоса частот с большим затуханием – полосой заграждения. По взаимному расположению полосы пропускания и заграждения принято выделять следующие типы фильтров: фильтр нижних частот (ФНЧ), пропускающие сигналы ниже заданной граничной частоты и подавляющие сигналы с частотами выше граничной; фильтры верхних частот (ФВЧ), пропускающие сигналы на частотах выше заданной и подавляющие сигналы других частот; полосно-пропускающие (полосовые) фильтры (ППФ), пропускающие сигналы в пределах заданной полосы частот и подавляющие сигналы вне этой полосы, полосно-заграждающие (режекторные) фильтры (ПЗФ), подавляющие сигналы в пределах заданной полосы частот и пропускающие сигналы вне этой полосы.

Частотная характеристика каждого фильтра имеет переходную область между полосой пропускания и полосой заграждения, то есть между частотами з и п . В этой области затухание меняется от максимального значения до минимального. Обычно стараются уменьшить эту область, что приводит к усложнению фильтра, увеличению числа его звеньев. При проектировании фильтров, как правило, задаются следующие характеристики: полоса пропускания, полоса заграждения, средняя частота, затухание в полосе пропускания, затухание в полосе заграждения, крутизна изменения затухания в переходной области, уровень согласования по входу и по выходу, характеристики линии передачи, в которую включается фильтр, тип линии передачи, иногда оговариваются фазовые характеристики фильтра.

Таблица 2.4 – Исходные характеристики ППФ

2.8.1 Расчет низкочастотного фильтра прототипа

В настоящее время наиболее распространенной методикой расчета фильтров СВЧ является методика, согласно которой вначале рассчитывается низкочастотный фильтр-прототип. Нахождение параметров схемы фильтра-прототипа по заданной частотной характеристике фильтра является задачей параметрического синтеза. Для общности результатов все величины нормируются. Сопротивления нагрузки и генератора принимается равным единице. Наряду с нормировкой по сопротивлению проводится нормировка по частоте, например граничная частота полосы пропускания фильтра принимается равным единице. Таким образом расчет фильтра СВЧ сводится к синтезу схемы НЧ-прототипа и замене элементов с сосредоточенными параметрами их эквивалентами с распределенными параметрами.

Для аппроксимации частотных характеристик применяется ряд функций, удовлетворяющих условиям физической реализуемости фильтров. Наиболее распространенной являются максимально плоская и равноволновая аппроксимации, использующие полиномы Баттерворта и Чебышева соответственно.

Рассчитаем фильтр с максимально плоской характеристикой затухания. Она монотонно возрастает при повышении частоты:

,

где n – число звеньев фильтра прототипа,

=/ п – нормированная частота,

=10 L п/10 -1 – коэффициент пульсаций,

 п – граничная частота полосы пропускания,

L п – затухание на частоте  п (см рисунок 2.3).

Рисунок 2.3 – Максимально плоская характеристика затухания фильтра-прототипа нижних частот

Число звеньев фильтра прототипа может быть найдено из требований к АЧХ фильтра. Так, для фильтра с максимально плоской АЧХ:

,

то есть для нашего фильтра необходимо, чтобы n 2.76 .

Возьмем n =3 , тогда схема фильтра-прототипа будет иметь вид, изображенный на рисунке 2.4

Рисунок 2.4 – Схема фильтра-прототипа нижних частот

Параметры фильтра можно рассчитать по сложным формулам, а можно воспользоваться справочной литературой, например : g 0 =1, g 1 =0.999165, g 2 =1.998330, g 3 =0.999165, g 4 =1.

Денормировки параметров фильтра производится с помощью соотношений

,

,

.

Здесь обозначения со штрихом относятся к нормированным параметрам фильтра-прототипа, без штрихов к денормированным: R 0 `=1, L 1 `=1, C 2 `=2, L 3 `=1, R 4 `=1.

Так как будущий фильтр будем ставить в коаксиальный тракт передачи, то R 0 =75Ом , тогда

2.8.2 Расчет ППФ

Для проектирования ППФ воспользуемся фильтром-прототипом, рассчитанным в предыдущем пункте и реактансное преобразование частоты

где 0 =( п -п ) 0.5 – центральная частота ППФ,

k з =1/2  - коэффициент преобразования,

2  = п - -п – полоса пропускания ППФ.

Любая индуктивность в фильтре прототипе после выполнения частотного преобразования трансформируются в последовательный контур с параметрами

Одновременно любая емкость в фильтре прототипе превращается в параллельный колебательный контур

Рисунок 2.5 – Эквивалентная схема ППФ

Таким образом, ППФ (рисунок 2.5) состоит из каскадно-включенных резонаторов, значения эквивалентных параметров которого получились следующими

2.8.3 Реализация ППФ

По способу реализации ППФ можно разделить на следующие типы: на одиночной МПЛ с зазорами, на параллельных связанных полуволновых резонаторах, на встречных стержнях, с параллельными и последовательными четвертьволновыми шлейфами длиной /4 , где - длина волны в линии, соответствующая средней частоте полосы пропускания ППФ; с двойными шлейфами и четвертьволновыми соединительными линиями на диэлектрических резонаторах.

Выполним ППФ на микрополосковых линиях (МПЛ) с двойными шлейфами и четвертьволновыми соединительными линиями.

МПЛ представляют собой тонкий слой металла, нанесенного на листы диэлектрика. Наиболее распространены экранированные несимметричные МПЛ. МПЛ используются во всем диапазоне СВЧ. По сравнению с прямыми волноводами МПЛ обладают рядом недостатков – имеют более высокие погонные потери и сравнительно низкую передаваемую мощность. Кроме того, открытые МПЛ излучают энергию в пространство, из-за чего могут возникать нежелательные электромагнитные связи.

Но МПЛ обладают и важными достоинствами. Они имеют малые габариты и массу, дешевы в изготовлении, технологичны и удобны для массового производства методами интегральной технологии, что позволяет реализовать на пластине из металлизированного с одной стороны диэлектрика целые узлы и функциональные модули в микрополосковом исполнении.

Реализация последовательных колебательных контуров в МПЛ очень затруднена. Вместе с тем можно последовательное включение перевести в параллельное так, как это показано на рисунке 2.6 с помощью преобразований

Рисунок 2.6 Замена последовательного колебательного контура параллельным

Тождество на рисунке 2.6 выполняется только на резонансной частоте, поэтому получившуюся схему следует подвергать анализу для определения ее частотных свойств.

После замены получим схему ППФ изображенную на рисунке 2.7

Рисунок 2.7 – Эквивалентная схема ППФ

Эта схема имеет следующие значения параметров

Длина соединительной линии будет известна после определения параметров МПЛ.

Для расчета волнового сопротивления МПЛ воспользуемся выражением, полученным в квазистатическом приближении

(2.1)

Точность определения по этой формуле составляет 1% при w / h 0.4 и 3% при w / h <0.4 .

Для расчета длины волны на низких частотах на практике широко используется формула, также полученная в квазистатическом приближении

где - длина волны в свободном пространстве,

э – эффективная диэлектрическая проницаемость линии.

Эффективная диэлектрическая проницаемость может быть вычислена по формуле

, (2.3)

Подложку выполним на диэлектрике с относительной диэлектрической проницаемостью =7 , а толщину подложки примем h =5мм . Ширина металлической полоски w , а соответственно и отношение w / h ,будут меняться при расчетах.

Сначала рассчитаем параметры соединительных линий. Для согласования фильтра с трактом передачи его соединительные линии должны иметь волновое сопротивление равное волновому сопротивлению коаксиала Z 0 =75Ом. Разрешая выражение (2.1) находим, что w / h =0.5, тогда ширина полоски w =0.5 5=2.5(мм) . По формуле (2.3) находим эффективную диэлектрическую проницаемость

Расчет ведем на средней частоте диапазона, поэтому 0 =0.594м , тогда по (2.2) длина волны в линии

Так как соединительная линия четвертьволновая, то ее длину определим по формуле

Параллельная индуктивность реализуется в виде короткозамкнутого параллельного шлейфа. Реактивное сопротивление такого отрезка линии определяется по формуле

(2.4)

Сопротивление этого шлейфа на средней частоте диапазона должно равняться сопротивлению параллельно включенной индуктивности, поэтому можно определить длину отрезка

(2.5)

Примем w / h =1(w =5мм)

Теперь по формуле (2.5) можно определить длину шлейфов, заменяющих каждую индуктивность

Параллельная емкость реализуется в виде параллельного шлейфа разомкнутого на конце. Реактивное сопротивление такого отрезка линии определяется по формуле

Сопротивление этого шлейфа на средней частоте диапазона должно равняться сопротивлению параллельно включенной емкости, поэтому можно определить длину шлейфа

(2.6)

Примем w / h =0.2(w =1мм) , тогда по (2.1)-(2.3) получаем

Теперь по формуле (2.5) можно определить длину шлейфов, заменяющих каждую емкость

Занесем параметры шлейфов в таблицу 2.5.

Таблица 2.5 Размеры ППФ на МПЛ

Схема ППФ приведена в приложении Д.

2.8.4 Расчет АЧХ

АЧХ фильтра – это есть зависимость вносимого в тракт затухания от частоты. Зная входное сопротивление фильтра можно определить коэффициент отражения

(2.7)

Тогда АЧХ будет иметь следующий вид

(2.8)

Определим АЧХ низкочастотного фильтра прототипа изображенного на рисунке 2.4 после денормировки параметров

Подставляя в (2.7) и (2.8) получим характеристику затухания.

Определим АЧХ эквивалентной схемы ППФ изображенной на рисунке 2.5

Подставляя в (2.7) и (2.8), получим необходимую характеристику затухания.

Теперь определим АЧХ фильтра на МПЛ. Зависимость от частоты сопротивлений индуктивных и емкостных шлейфов определяется формулами

где i=1,2,3;

Z 0 L и Z 0 C – волновые сопротивления индуктивных и емкостных шлейфов соответственно.

Входное сопротивление фильтра

Конечная формула для входного сопротивления имеет очень сложный вид, поэтому не будем ее здесь приводить. По формулам (2.7) и (2.8) получим АЧХ.

Все АЧХ полученные в этом пункте приведены в приложении Г.

Сегодня КСВ-метры есть практически на любой любительской радиостанции - встроенные в фирменную аппаратуру, самостоятельные фирменные приборы или самодельные. Результаты их
работы (КСВ антенно-фидерного тракта) широко обсуждаются радиолюбителями.

Как известно, коэффициент стоячей волны в фидере однозначно определяется входным импедансом антенны и волновым сопротивлением фидера. Эта характеристика антенно-фидерного тракта не зависит ни от уровня мощности, ни от выходного сопротивления передатчика. На практике его приходится измерять на некотором удалении от антенны - чаще всего непосредственно у трансивера. Известно, что фидер трансформирует входной импеданс антенны в некоторые его значения, которые определяются длиной фидера. Но при этом в любом сечении фидера они такие, что соответствующее им значение КСВ не изменяется. Другими словами, он в отличие от импеданса, приведённого к дальнему от антенны концу фидера, не зависит от длины фидера, поэтому измерять КСВ можно и непосредственно у антенны, и на некотором удалении от неё (например, у трансивера).

В радиолюбительских кругах ходит немало легенд о «полуволновых повторителях», якобы улучшающих КСВ. Фидер с электрической длиной в половину рабочей длины волны (или в их целое число) действительно является «повторителем» - импеданс на дальнем от антенны его конце будет равен входному импедансу антенны. Единственная польза от этого эффекта - возможность дистанционно измерить входной импеданс антенны. Как уже отмечалось, на значение КСВ (т.е. на энергетические соотношения в антенно- фидерном тракте) это не влияет.

На самом деле при удалённом от точки подключения фидера к антенне измерении КСВ регистрируемое его значение всегда несколько отличается от истинного. Эти отличия объясняются потерями в фидере. Они строго детерминированы и могут только «улучшить» регистрируемое значение КСВ. Однако это эффект часто на практике бывает незначительным, если используется кабель с малыми погонными потерями и длина самого фидера сравнительно небольшая.

Если входной импеданс антенны не является чисто активным и равным волновому сопротивлению фидера, в нём устанавливаются стоячие волны, которые распределены по фидеру и состоят из чередующихся минимумов и максимумов ВЧ напряжения.

На рис. 1 показано распределение напряжения в линии при чисто активной нагрузке, несколько большей волнового сопротивления фидера. При наличии в нагрузке реактивности распределение напряжения и тока смещается влево или вправо по оси ^ в зависимости от характера нагрузки. Период повторения минимумов и максимумов по длине линии определяется рабочей длиной волны (в коаксиальном фидере - с учётом коэффициента укорочения). Их характеристикой и является значение КСВ - отношение максимального и минимального напряжения в этой самой стоячей волне, т. е. КСВ = Umax/Umin.

Напрямую значения этих напряжений определяют только с помощью измерительных линий, которые в любительской практике не применяют (в диапазоне коротких волн - и в профессиональной тоже) Причина тому простая: чтобы иметь возможность измерить изменения этого напряжения по длине линии, её длина должна быть заметно больше, чем четверть волны. Иными словами, даже для самого высокочастотного диапазона 28 МГц она должна быть уже несколько метров и соответственно ещё больше для низкочастотных диапазонов.
По этой причине и были разработаны малогабаритные датчики прямой и обратной волн в фидере («направленные ответвители»), на основе которых и изготавливают современные измерители КСВ в диапазонах коротких волн и в низкочастотном участке УКВ диапазона (примерно до 500 МГц). Они измеряют высокочастотное напряжение и токи (прямой и обратный) в конкретной точке фидера, а на основании уже этих измерений и вычисляется соответствующий им КСВ. Математика позволяет вычислить его точно по этим данным - с этой точки зрения метод абсолютно честный. Проблема состоит в погрешности датчиков как таковых.

По физике работы таких датчиков они должны измерять ток и напряжение в одной и той же точке фидера. Существует несколько вариантов исполнения датчиков - схема одного из самых распространённых вариантов приведена на рис. 2.

Они должны быть выполнены так, чтобы при нагрузке измерительного узла эквивалентом антенны (резистивной безындукционной нагрузкой с сопротивлением, равным волновому сопротивлению фидера) напряжение на датчике, которое снимается с ёмкостного делителя на конденсаторах С1 и С2, и напряжение на датчике тока, которое снимается с половин вторичной обмотки трансформатора Т1, были равны по амплитуде и сдвинуты по фазе точно на 180° или 0° соответственно. Причём эти соотношения должны сохраняться во всей полосе частот, на которую рассчитан данный измеритель КСВ. Далее эти два ВЧ напряжения либо суммируются (регистрация прямой волны), либо вычитаются (регистрация обратной волны).
Первым источником погрешностей при этом методе регистрации КСВ является то, что датчики, особенно в самодельных конструкциях, не обеспечивают названные выше соотношения между двумя напряжениями во всей полосе частот. Как результат, происходит «разбаланс системы» - проникание ВЧ напряжения из канала, обрабатывающего информацию о прямой волне, в канал, делающий это для обратной волны, и наоборот. Степень развязки этих двух каналов принято характеризовать коэффициентом направленности прибора. Даже у вроде бы хороших приборов, предназначенных для радиолюбителей, и тем более у самодельных, он редко превышает 20…25 дБ.

Это означает, что нельзя доверять показаниям подобного «измерителя КСВ» при определении небольших значений КСВ. Причём в зависимости от характера нагрузки в точке измерения (а она зависит от длины фидера!) отклонения от истинного значения могут быть в ту или иную сторону. Так, при коэффициенте направленности прибора 20 дБ значению КСВ=2 могут соответствовать показания прибора от 1,5 до 2,5. Вот почему один из методов проверки подобных приборов - измерение КСВ, не равного 1 при длинах фидера, отличающихся на четверть рабочей длины волны. Если будут получены различные значения КСВ, это лишь говорит о том, что у конкретного КСВ-метра недостаточный коэффициент направленности…
Именно этот эффект и породил, по-видимому, легенду о влиянии длины фидера на КСВ.

Ещё один момент - это не совсем «точечный» характер измерений в таких приборах (точки съёма информации о напряжении и токе не совпадают).

Влияние этого эффекта менее значимо. Другой источник погрешностей - падение эффективности выпрямления диодов датчиков при малых ВЧ напряжениях. Эффект этот известен большинству радиолюбителей. Он приводит к «улучшению» КСВ при его малых значениях. По этой причине в КСВ-метрах практически никогда не используют кремниевые диоды, у которых зона неэффективного выпрямления гораздо больше, чем у германиевых или у диодов Шотки. Наличие этого эффекта в конкретном приборе легко проверяется изменением уровня мощности, при котором производятся измерения. Если КСВ начинает «возрастать» при увеличении мощности (речь идёт о его малых значениях), значит диод, ответственный за регистрацию обратной волны, явно занижает соответствующее ей значение напряжения.

При ВЧ напряжении на выпрямителе датчика меньше 1 В (эффективное значение) линейность вольтметра, в том числе и выполненного с использованием германиевых диодов, нарушается. Этот эффект можно минимизировать, производя градуировку шкалы КСВ-метра не расчётным путём (как это часто делают), а по реальным значениям КСВ нагрузки.

Ну и, наконец, нельзя не упомянуть ток, протекающий по внешней оплётке фидера. Если не приняты соответствующие меры, он может быть заметным и влиять на показания прибора. В его отсутствии обязательно надо убедиться при измерениях КСВ реальных антенн.

Все эти проблемы присутствуют и в приборах заводского изготовления, но особенно они обостряются в самодельных конструкциях. Так, в подобных устройствах не последнюю роль может играть даже недостаточная экранировка внутри блока датчиков прямой и обратной волн.

Что касается приборов заводского изготовления, то для иллюстрации их реальных характеристик можно привести данные из обзора, опубликованного в . В лаборатории ARRL были проверены пять измерителей мощности и КСВ разных фирм. Цена - от 100 до 170 долларов США. Четыре прибора использовали двухстрелочные индикаторы прямой и обратной (отражённой) мощности, позволявшие сразу считывать значение КСВ по объединённой шкале прибора. Практически все приборы имели заметную погрешность измерения мощности (до 10…15%) и заметную неравномерность её индикации по частоте (в полосе частот 2…28 МГц). То есть можно ожидать, что погрешность отсчёта КСВ будет выше приведённых значений. Более того, не все приборы, будучи подключёнными к эквиваленту антенны, показывали КСВ=1. Один из них (не самый дешёвый) даже показал 1,25 на частоте 28 МГц.
Иными словами, надо быть аккуратным при проверке самодельных КСВ-метров по приборам, которые выпускаются для радиолюбителей. И в свете сказанного совсем смешно звучат заявления некоторых радиолюбителей, которые нередко можно услышать в эфире или прочитать в радиолюбительских статьях в Интернете или в журналах, что у них КСВ, к примеру, 1,25… Да и целесообразность введения в подобные приборы цифрового отсчёта значений КСВ представляется не такой уж целесообразной.

Борис СТЕПАНОВ

В линии с КСВ>1 наличие отраженной мощности не приводит к потерям передаваемой мощности, хотя некоторые потери наблюдаются из-за конечного затухания в линии в фидерной линии без потерь нет потерь мощности из-за отражения независимо от величины КСВ. На всех KB диапазонах с кабелем, имеющим низкие потери, потери в рассогласованной линии обычно незначительны, однако на УКВ могут быть существенными, а на СВЧ-даже чрезвычайно большими. Затухание в кабеле зависит, прежде всего, от характеристик самого кабеля и его длины. При работе на KB кабель должен быть очень длинным или очень плохим, чтобы потери в кабеле стали весьма существенными.

Отраженная мощность не течет обратно в передатчик и не повреждает его. Повреждения, иногда приписываемые высокому КСВ, обычно вызывает работа выходного каскада передатчика на рассогласованную нагрузку. Передатчик не «видит» КСВ, он «видит» только импеданс нагрузки, который зависит и от КСВ. Это означает, что импеданс нагрузки можно сделать точно соответствующим требуемому (например, с помощью антенного тюнера), не беспокоясь о КСВ в фидере.

Усилия, затрачиваемые на снижение КСВ ниже 2:1 в любой коаксиальной линии, вообще представляются затраченными впустую - с точки зрения увеличения эффективности излучения антенны, но целесообразны в том случае, если схема защиты передатчика срабатывает, например, при КСВ>1,5.

Высокий КСВ не обязательно указывает, что антенна работает плохо - эффективность излучения антенны определяется соотношением ее сопротивления излучения к общему входному сопротивлению.

Низкий КСВ - не обязательно свидетельство того, что антенная система является хорошей. Напротив, низкий КСВ в широкой полосе частот является поводом для подозрений, что, например, в диполе или вертикальной антенне велико сопротивление потерь, обусловленное плохими соединениями и контактами, неэффективной системой заземления, потерями в кабеле, попаданием влаги в линию и т.д. Так, эквивалент нагрузки обеспечивает в линии КСВ=1,0, но он вообще не излучает, а короткая вертикальная антенна с сопротивлением излучения 0,1 Ом и потерями сопротивления 49,9 Ом излучает лишь 0,2% от поступающей мощности, обеспечивая при этом КСВ 1,0 в фидере.

Для достижения максимального ВЧ тока излучатель антенной системы не обязательно должен иметь резонансную длину и не требует фидера определенной длины. Существенное рассогласование между линией питания и излучателем не препятствует поглощению излучателем всей реально поступающей мощности. При использовании соответствующего согласования (например, антенного тюнера) для компенсации реактивности не резонансного излучателя в месте подключения фидерной линии случайной длины антенная система является согласованной, и фактически вся подводимая мощность может эффективно излучаться.

На КСВ в фидерной линии не влияет настройка антенного тюнера, установленного возле передатчика . Низкий КСВ в линии, достигнутый с помощью тюнера, обычно является свидетельством того, что в процессе настройки тюнера произошло рассогласование между передатчиком и входом антенного тюнера, и передатчик работает на несогласованную нагрузку.

Вопреки расхожим представлениям, с хорошим симметричным (балансным) антенным тюнером и открытой двухпроводной фидерной линией излучение питаемого в центре диполя длиной 80 м, работающего в диапазоне 3,5 МГц, не намного эффективнее излучения такой же антенны длиной 48 м, работающей в том же диапазоне и с той же мощностью передатчика. Эффективность излучения диполя, настроенного в резонанс на частоте, например, 3750 кГц, практически такая же, как и на частоте 3500 или 4000 кГц при использовании любого фидера разумной длины; хотя можно ожидать, что КСВ на краях диапазона может достигать 5 и что коаксиальный кабель в действительности будет работать как настроенная линия. В этом случае, разумеется, потребуется использовать соответствующее устройство согласования (например, антенный тюнер) между передатчиком и фидером. Если для достижения согласования коаксиальный фидер любой антенной системы требует определенной длины, тот же самый входной импеданс можно получить с кабелем любой длины с помощью соответствующей простой цепи согласования из индуктивностей и емкостей.

Высокий КСВ в коаксиальном фидере, вызванный значительным рассогласованием характеристического сопротивления линии и входного сопротивления антенны, сам по себе не вызывает появления ВЧ тока на внешней поверхности оплетки кабеля и излучения фидерной линии . В диапазонах коротких волн высокий КСВ в любой открытой линии, работающей с высоким КСВ, не будет ни вызывать протекание антенного тока по линии, ни приводить к излучению линии при условии, что токи в линии сбалансированы, и расстояние между проводниками линии мало по сравнению с рабочей длиной волны (это справедливо и на УКВ при условии отсутствия острых изгибов линии). Ток на внешней поверхности оплетки фидера и излучение фидера практически отсутствуют, если антенна сбалансирована относительно земли и фидера (например, при использовании горизонтальной антенны фидер должен располагаться вертикально); в таких случаях не нужно применять симметрирующие устройства (балуны) между антенной и фидером.

КСВ-метры, установленные на участке между антенной и фидером, не обеспечивают более точное измерение КСВ . КСВ в фидере не может регулироваться изменением длины линии. Если показания КСВ-метра при перемещении по линии существенно различаются, это может указывать на антенный эффект фидера, вызываемый током, текущим по внешней стороне оплетки коаксиального кабеля, и/или на плохую конструкцию КСВ-метра, но не на то, что КСВ изменяется вдоль линии.

Любая реактивность, добавленная к существующей резонансной нагрузке (имеющей только активное сопротивление) с целью снижения КСВ в линии, вызовет только увеличение отражения. Самый низкий КСВ в фидере наблюдается на резонансной частоте излучающего элемента и совершенно не зависит от длины фидера.

Эффективность излучения диполей различных типов (из тонкого провода, петлевого диполя, «толстого» диполя, трапового или коаксиального диполя) практически одинакова при условии, что каждый из них имеет незначительные омические потери и питается одинаковой мощностью. Однако «толстые» и петлевые диполи имеют более широкую рабочую полосу частот по сравнению с антенной из тонкого провода.

Если входное сопротивление антенны отличается от характеристического сопротивления фидерной линии, то сопротивление нагрузки передатчика может весьма значительно отличаться от характеристического сопротивления линии (если электрическая длина линии не кратна L/2), и от сопротивления в месте подключения к антенне. В этом случае импеданс нагрузки передатчика зависит еще и от длины фидера, который действует как трансформатор сопротивлений. В таких случаях, если не установлена подходящая цепь согласования между передатчиком и линией передачи, импеданс нагрузки может быть комплексным (т.е. иметь активную и реактивную составляющие), и с ним выходная схема передатчика может не справиться. В этом случае изменением длины линии передачи иногда удается обеспечить согласование нагрузки с передатчиком - именно это обстоятельство, скорее чем любые потери, связанные с КСВ, привело к возникновению многих неверных представлений о работе фидерных линий.

Любая питаемая в центре антенна любой разумной длины с любым типом фидера с низкими потерями будет обеспечивать достаточно эффективное излучение электромагнитной энергии . При этом, как правило, требуется хороший антенный тюнер, если передатчик рассчитан на работу с низкоомной нагрузкой (например, 50 Ом). Этим объясняется тот факт, что многие годы питаемый в центре диполь остается популярной многодиапазонной антенной.

Какую выбрать антенну на автомобиль? Тут вариантов много. От самых дешевых и самых простых "удочек" до очень дорогих и длинных. Очевидно, надо выбирать, какого размера штырь еще не страшно ставить на авто. В общем, чем длиннее штырь, тем лучше связь (при условии, что антенна согласована).

Как настроить антенну? Для этого нужен пpибоp - КСВ-метp. Hе надо думать что можно настроить антенну без него. КСВ-метр стоит около 1000 руб. Hастраивать антенну в пеpвом приближении надо по минимуму КСВ (коэффициент стоячей волны), требуется добиться КСВ меньше 1,5; обычно автомобильную удается довести до 1,1. Надо иметь в виду, что работа при КСВ >3 может привести к повреждению выходного каскада передатчика импортной Си-Би рации (у раций производства КБ Беркут передатчики менее критичны к настройке антенн, из строя не выходят).

Вообще настойка и выбор антенн дело отдельного FAQ.

О чем надо помнить при выборе антенны? Антенна - лучший усилитель. Хорошая антенна позволит сэкономить на усилителе. Тем более что усилитель всё равно нельзя применять без достаточно хорошей антенны – он попросту выйдет из строя при плохом КСВ (хуже 2, если усилитель достаточно мощный).

Что такое фидер? Фидер, фидерная линия - это линия связи станции и антенны. В общем случае коаксиальный кабель с волновым сопротивлением 50 Ом. Фидер вносит потери в сигнал, поэтому кабель с меньшими потерями стоит дороже, но при большой длине может себя оправдывать. Фидер, питающий антенну, может работать в нескольких режимах:

Ненастроенный фидер Идеальное согласование (КСВ=1) получается при равенстве выходного сопротивления радиостанции, волнового сопротивления фидера (в частном случае коаксиального кабеля) и входного сопротивления антенны. Полоса частот, в которой выполняется условие достаточно хорошего согласования, определяется изменением комплексного выходного и входного сопротивлений передатчика и антенны соответственно, при изменении рабочей частоты. При работе в этом режиме длина фидера может быть произвольной. Большинство современных радиостанций и промышленных антенн имеют вх./вых. сопротивления (теоретически) 50 Ом и, при применении кабеля с волновым сопротивлением 50 Ом, при настроенной антенне дополнительного согласования не требуется. Промышленные КСВ-метры также рассчитаны на 50 Ом.

Настроенный фидер. При использовании фидера с волновым сопротивлением, отличным от входного и выходного сопротивлений антенны и pадиостанции также можно добиться идеального согласования (КСВ=1). Достаточные условия для этого равенство входного и выходного сопротивлений антенны и pации, и длина фидера, кратная половине длины волны в фидере (т.е. с учетом коэффициента укорочения). В этом случае фидер работает в режиме (полуволнового) повторителя. Т.е. независимо от волнового сопротивления фидера, он не оказывает влияния на согласование антенны с p-ст. С этим связан известный способ "настройки" кабеля. К выходу p-ст (считаем 50 Ом) подключается КСВ-метр, затем кабель. К концу кабеля подключается эквивалент нагрузки - безиндукционный резистор 50 Ом. Постепенно укорачивая кабель, добиваются КСВ = 1. В этом случае длина кабеля должна получиться кратной полуволне (которая в кабеле RG-58c/u с полиэтиленовой изоляцией для СВ равна магическому числу 3.62 метра). при значительном изменении рабочей частоты согласование нарушается (т.к. меняется длина волны в кабеле).

Какие типы кабеля и разъёмов используются для подключения антенн? При подключении антенны к портативкам используют разъём TNC (резьбовой, надёжный) и BNC (отечественный СР-50) - байонетный, несколько менее надёжный, и кабель типа RG-58 с разными буквами (по электрическим свойствам).

На автомобилях используют разъём PL259 для тонкого кабеля (RG-58) и этот кабель (RG-58).

На базе используют разъём PL259 для толстого кабеля и кабель RG-213 (толстый с пониженными потерями). Существуют переходники с любого разъёма на любой.

Отечественный кабель используют в основном РК-50-2 (тонкий) и РК-50-7 (толстый) для базы.

Что такое согласование антенны? Грубо говоря коэффициент полезного действия системы станция-фидеp-антенна, а также процесс получения максимального кпд. Зависит от частоты, т.е. на одной частоте, например, в 20 канале сетки C оно хорошее, а в каналах 1 и 40 той же сетки C оно может быть плохим. Подстраивается длиной штыревой антенны или фидерного кабеля, или специальным согласующим устройством, по-английски - матчером. В общем случае эквивалентное сопротивление на антенном разъёме станции (усилителя) 50 Ом. Эквивалентное сопротивление разных антенн существенно разное, от 30 до нескольких тысяч Ом. В фирменных антеннах уже сделано конструктивное согласование, самоделки лучше подключать через матчер, но, поскольку сопротивление антенны зависит ещё и от местных условий, любую антенну надо подстраивать на месте.

Что представляет собой матчеp? В простейшем случае П-контуp, состоящий из катушки индуктивности и двух переменных емкостей. Подстраивая эти ёмкости, можно изменять входное и выходное комплексное сопротивление этого четыpехполюсника, чем и достигается согласование.

Что такое КСВ? Коэффициент стоячей волны - мера согласования. Бывает от 1 (идеал) до 3 (плохо, но работать можно), 4...5 - работать не рекомендуется, может оказаться и больше. Измеряется специальным прибором - КСВ-метром. Пользуются им так: прибор включить между антенной и усилителем (станцией). Внимание: прибор должен допускать работу при Вашей мощности!!! Переключатель поставить в положение FWD (прямое включение). Включите передачу, выставьте ручкой стрелку на конец шкалы, переключите прибор в положение REF, включите передачу, считайте значение КСВ.

Потери мощности:

КСВ=1- потери 0%

КСВ=1,3 - потери 2%

КСВ=1,5 - потери 3%

КСВ=1,7 - потери 6%

КС=2 - потери 11%

КСВ=3 - потери 25%

КСВ=4 - потери 38%

КСВ=10- потери 70%

Но прирост в эффективности за счёт длины - как правило- гораздо существеннее потерь в мощности - т.е. более длинная антенна с худшим КСВ обычно лучше, чем короткая антенна с хорошим КСВ (в формулах дальность пропорциональна корню четвёртой степени из мощности (при сильных электромагнитных помехах скорее корню квадратному), т.е. потеря мощности на 16% приведёт к уменьшению дальности на 2-4%). А вот физические размеры антенны, высота верхней точки над землёй - во все формулы дальности связи входят как прямая пропорциональность дальности, а отнюдь не корни квадратные или 4-ой степени, т.е. влияют на дальность радиосвязи гораздо сильнее).