История создания конденсатора презентация. Презентация на тему типы конденсаторов и их применение


















В настоящее время широко применяются бумажные конденсаторы для напряжений в несколько сот вольт и ёмкостью в несколько микрофарад. В таких конденсаторах обкладками служат две длинные ленты тонкой металлической фольги, а изолирующей прокладкой между ними – несколько более широкая бумажная лента, пропитанная парафином. Бумажной лентой покрывается одна из обкладок, затем ленты туго свёртываются в рулон и укладываются в специальный корпус. Такой конденсатор, имея размеры спичечного коробка, обладает ёмкостью 10мкФ (металлический шар такой ёмкости имел бы радиус 90км).


В радиотехнике применяются слюдяные конденсаторы небольшой ёмкости (от десятков до десятков тысяч пикофарад). В них листки станиоля прокладываются слюдой так, что все нечётные листки станиоля, соединённые вместе, образуют одну обкладку конденсатора, тогда как чётные листки образуют другую обкладку. Внешний вид и отдельные части такого конденсатора показаны на рисунке. Эти конденсаторы могут работать при напряжениях от сотен до тысяч вольт.


В последнее время слюдяные конденсаторы в радиотехнике начали заменять керамическими. Диэлектриком в них служит специальная керамика. Обкладки керамических конденсаторов изготавливаются в виде слоя серебра, нанесённого на поверхность керамики и защищённого слоем лака. Керамические конденсаторы изготавливаются на ёмкости о единиц до сотен пикофарад и на напряжения от сотен до тысяч вольт.


Широкое распространение получили так называемые электролитические конденсаторы, диэлектриком в которых служит тончайший окисный слой на поверхности алюминия или тантала, находящийся в контакте со специальным электролитом. Эти конденсаторы имеют большую ёмкость (до нескольких тысяч микрофарад) при небольших размерах.


Часто используются конденсаторы переменной емкости с воздушным или твёрдым диэлектриком. Они состоят из двух систем металлических пластин, изолированных друг от друга. Одна система пластин неподвижна, вторая может вращаться вокруг оси. Вращая подвижную систему, плавно изменяют ёмкость конденсатора.



Муниципальное автономное общеобразовательное учреждение

«Лицей № 7» г. Бердск

Конденсаторы

8 класс

Учитель физики

И.В.Торопчина


Конденсатор

Конденсатор- это устройство, предназначенное для накопления электрического заряда и энергии электрического поля.


Конденсатор

Конденсатор представляет собой два

проводника (обкладки), разделенных слоем

диэлектрика, толщина которого мала по

сравнению с размерами проводников.


Все электрическое поле сосредоточено внутри конденсатора и однородно.

Заряд конденсатора - это абсолютное значение заряда одной из обкладок конденсатора.



- по виду диэлектрика : воздушные,

слюдяные, керамические,

электролитические. - по форме обкладок : плоские,

сферические, цилиндрические. - по величине емкости:

постоянные, переменные.


  • В зависимости от назначения конденсаторы имеют различное устройство.

  • Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пакет небольшого размера

Конденсаторы переменной электроемкости


Обозначение конденсаторов

Конденсатор постоянной ёмкости

Конденсатор переменной ёмкости


Электроемкость

Физическая величина, характеризующая способность двух проводников накапливать электрический заряд называется электроёмкостью, или ёмкостью.


При увеличении заряда в 2, 3, 4 раза соответственно в 2, 3, 4

раза увеличатся показания электрометра, т. е. увеличится

напряжение между пластинами конденсатора.

Отношение заряда к напряжению будет оставаться

постоянным:


Электроёмкость конденсатора

  • Величина, измеряемая отношением заряда ( q) одной из пластин конденсатора к напряжению ( U) между пластинами, называется электроёмкостью конденсатора .
  • Электроёмкость конденсатора вычисляется по формуле:

C = q / U


Единицы электроемкости

Электроемкость измеряется в фарадах(Ф)

[ С ] = 1Ф (фарад)

Электроемкость двух проводников численно

равна единице, если при сообщении им зарядов

+1 Кл и -1 Кл между ними возникает разность

потенциалов 1В

1Ф = 1Кл/В


Единицы электроемкости

1 мкФ (микрофарад)=10 -6 Ф

1 нФ (нанофарад)=10 -9 Ф

1 пФ (пикофарад)=10 -12 Ф



  • Чем больше площадь пластин, тем больше ёмкость конденсатора.
  • При уменьшении расстояния между пластинами конденсатора при неизменном заряде ёмкость конденсатора увеличивается.
  • При внесении диэлектрика ёмкость конденсатора увеличивается.

Емкость конденсатора зависит от площади пластин, расстояния между пластинами, от свойств внесённого диэлектрика.


Электроемкость

от геометрических

размеров проводников

Зависит

от формы проводников и

их взаимного расположения

от электрических свойств

среды между проводниками


Энергия конденсатора

  • Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. В соответствии с законом сохранения энергии, совершённая работа А равна энергии конденсатора Е, т. е

А = Е,

где Е - энергия конденсатора.

  • Работу электрическое поле конденсатора, можно найти по формуле: А = qU cp ,

где U ср - это среднее значение напряжения.

U ср = U/2; тогда А = qU ср = qU/2, так как q = CU, то А = CU 2 /2.

  • Энергия конденсатора ёмкостью С равна:

W = CU 2 /2


  • Конденсаторы могут длительное время накапливать энергию, а при разрядке они отдают её почти мгновенно.
  • Свойство конденсатора накапливать и быстро отдавать электрическую энергию широко используется в электротехнических и электронных устройствах, в медицинской технике (рентгеновская техника, устройства электротерапии), при изготовлении дозиметров, аэрофотосъёмке.


  • Лампа-вспышка питается электрическим током разрядки конденсатора.
  • Газоразрядные трубки зажигаются при разрядки батареи конденсаторов.
  • Радиотехника .


Первый конденсатор был изобретен в 1745 г. немецким юристом и учёным Эвальд Юрген фон Клейстом

Первый конденсатор: одна обкладка-ртуть, другая обкладка- рука экспериментатора, державшая банку.


  • Почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком.
  • Зарядив воду и взяв банку в одну руку, он прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде. При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя.
  • Эксперимент ван Мушенбрука получил большую известность, поэтому конденсатор стал известен как «лейденская банка».

Домашнее задание

§ 54, Упражнение 38

«Переменный ток» - Определение. Переменным током называется электрический ток, изменяющийся во времени по модулю и направлению. Переменный ток. Генератор переменного тока. ЭЗ 25.1 Получение переменного тока при вращении катушки в магнитном поле.

«Действие электрического тока» - Вам нужно сделать точный слепок с некоторого деревянного рельефа. Как по химическому действию тока можно судить о количестве прошедшего электричества? Какие действия электрического тока, проявляются в вашей квартире? «Подумаем». Выберите на демонстрационном столе оборудование для опыта в соответствии с рисунком.

«Мощность электрического тока» - А. A=IU Б. P=UI В. I=U/R А. A=UI Б. P=UI В. A=UIt А. Вт Б. А В. В А. 100 Вт Б. 400 Вт В. 4 кВт. Действие тока характеризуют две величины. Напряжение… Работа тока A=UIt. Электрический ток… Сила тока… Мощность электрического утюга равна 600 Вт, а мощность телевизора 100 Вт. Знать определение работы и мощности электрического тока на участке цепи?

«Электроемкость и конденсаторы» - Параллельное. Конденсаторы. Конденсатор переменной емкости. Все электрическое поле сосредоточено внутри конденсатора. -q. Энергия заряженного конденсатора. Соединение конденсаторов. Электроемкость. Последовательное. Обозначение на электрических схемах: Конденсатор постоянной емкости. +q. Вывод формулы энергии заряженного конденсатора.

«Переменный электрический ток» - В результате средняя мощность за период. Переменный Электрический ток. Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. E=-ф’= -bs(cos ?t)’= = bs? * sin ?t = em sin ?t. И наоборот, незатухающие вынужденные колебания имеют большое практическое значение. U=Um cos ?t.

«Конденсатор физика» - - Бумажный конденсатор - слюдяной конденсатор электролитический конденсатор. Назначение конденсаторов. Конденсаторы. При подключении электролитического конденсатора необходимо соблюдать полярность. Воздушный конденсатор. Определение конденсатора. Презентация по Физике на Тему: Бумажный конденсатор. Работу выполнила: Даутова Регина.

Всего в теме 9 презентаций

МАОУ Гимназия №1

Презентация по физике в 10 кл

«Конденсаторы»

Учитель физики

I квалификационной категории

Г.Белогорск Амурская область

Клименко Елена Николаевна Учитель физики Презентация по теме «Линзы» 11 класс Муниципальное общеобразовательное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов №1 Г.Белогорск Амурская область


КОНДЕНСАТОР – два проводника (обкладки), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

С- электроемкость (способность двух проводников накапливать электрический заряд).

С= q/U q- заряд, U- напряжение

В СИ электроемкость измеряется в Ф (фарад), 1Ф = 1 Кл/В


Электроемкость конденсатора зависит от:

  • расстояния между пластинами –d(м),
  • площади пластин –S(м),
  • от рода диэлектрика – ε(диэлектрическая проницаемость среды).

C =εέS/d

έ – электрическая постоянная



По виду диэлектрика конденсаторы различают на:

  • Вакуумные
  • Газообразные
  • Жидкие
  • Стеклянные
  • Слюдяные
  • Керамические
  • Бумажные
  • Электролитические
  • Оксидно-полупроводниковые

Способы соединения конденсаторов:

  • последовательное

2) параллельное


Конденсаторы различают по возможности изменения своей емкости :

  • постоянные конденсаторы - емкость не изменяется
  • переменные конденсаторы - емкость изменяется в процессе функционирования аппаратуры
  • Подстроечные конденсаторы – емкость изменяется при разовой или периодической регулировке и не изменяется в процессе работы аппаратуры

Энергия заряженного конденсатора определяется по формуле:

Си: [W] = Дж


Название

Емкость

Плоский конденсатор

Схема

Цилиндрический конденсатор

Сферический конденсатор

Применение конденсаторов :

  • Конденсаторы (совместно с катушками индуктивности и/или резисторами ) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров , цепей обратной связи , колебательных контуров и т. п.
  • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках , электромагнитных ускорителях , импульсных лазерах с оптической накачкой , генераторах Маркса, (ГИН; ГИТ) , генераторах Кокрофта-Уолтона и т. п.
  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • Измерителя уровня жидкости. Непроводящая жидкость, заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня
  • Измерительный преобразователь(ИП)влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).
  • Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов

Источники литературы:

1.Справочник по физике. Х.Кухлинг.,Москва «Мир», 1983.

2.Учебник по физике 10 кл.Г.Я.Мякишев. ,Б.Б.Буховцев., Н.Н.Сотский.2004.

Применение конденсаторов

В радиотехнической и
телевизионной
аппаратуре
В радиолокационной
технике
В современной технике конденсаторы
находят себе исключительно широкое
и разностороннее применение,
прежде всего в областях электроники.
В лазерной технике
В электроизмерительной
технике
В телефонии и
телеграфии
В автоматике и
телемеханике
В технике счетнорешающих устройств

1. В радиотехнической и телевизионной аппаратуре –
для создания колебательных контуров, их настройки,
блокировки, разделения цепей с различной частотой, в
фильтрах выпрямителей и т.д.

2.В радиолокационной технике – для получения
импульсов большей мощности, формирования
импульсов и т.д.

3.В телефонии и телеграфии – для разделения цепей переменного и
постоянного токов, разделения токов различной частоты,
искрогашения в контактах, симметрирования кабельных линий и т.д.

4. В автоматике и телемеханике – для создания
датчиков на емкостном принципе, разделения цепей
постоянного и пульсирующего токов, искрогашения в
контактах, в схемах тиратронных генераторов
импульсов и т.д.

5. В технике счетно-решающих устройств – в
специальных запоминающих устройствах и т.д.

6. В электроизмерительной технике – для создания
образцов емкости, получения переменной емкости
(магазины емкости и лабораторные переменные
конденсаторы), создания измерительных приборов на
емкостном принципе и т. д.

7. В лазерной технике

В современной электроэнергетике конденсаторы находят себе также
весьма разнообразное и ответственное применение:
1.Для улучшения коэффициента мощности и промышленных установок
(косинусные или шунтовые конденсаторы);
2.Для продольной емкости компенсации дальних линий передач и для
регулирования напряжения в распределительных сетях (серийные
конденсаторы);
3.Для емкостного отбора энергии от линий передач высокого напряжения и
для подключения к линиям передач специальной аппаратуры связи и
защитной аппаратуры (конденсаторы связи);
4.Для защиты от перенапряжений.

В
металлопромыш
ленности
В добывающей
промышленности
Конденсаторы применяют и в других
неэлектротехнических областях техники
и промышленности для следующих
основных целей
В
автотракторной
технике
В
медицинской
технике

1. В металлопромышленности - в высокочастотных
установках для плавки и термической обработки металлов, в
электроэрозионных (электроискровых) установках, для
магнитоимпульсной обработки металлов и т.д.

2. В добывающей промышленности (угольной,
металлорудной и т.п.) – в рудничном транспорте на
конденсаторных электровозах нормальной и
повышенной частоты (бесконтактных), в
электровзрывных устройствах с использованием
электрогидравлического эффекта и т.д.

3. В автотракторной технике – в схемах зажигания для
искрогашения в контактах и для подавления
радиопомех

4. В медицинской технике – в рентгеновской
аппаратуре, в устройствах электротерапии и т.д.