С помощью лимона можно сделать батарейку. Как сделать батарейку из лимона или яблока

Сочные фрукты, молодой картофель и другие пищевые продукты могут служить питанием не только для людей, но и для электроприборов. Чтобы добыть из них электричество, понадобятся оцинкованный гвоздь или шуруп (то есть практически любой гвоздь или шуруп) и отрезок медной проволоки. Чтобы зафиксировать присутствие электричества, нам пригодится бытовой мультиметр, а более наглядно продемонстрировать успех поможет светодиодный светильник или даже вентилятор, рассчитанные на питание от батареек.

Разомните лимон в руках, чтобы разрушить внутренние перегородки, но не повредите кожуру. Воткните гвоздь (шуруп) и медную проволоку так, чтобы электроды располагались как можно ближе друг к другу, но не соприкасались. Чем ближе будут находиться электроды, тем меньше вероятность, что они окажутся разделены перегородкой внутри фрукта. В свою очередь, чем лучше ионный обмен между электродами внутри батарейки, тем больше ее мощность.

Суть опыта в том, чтобы поместить медный и цинковый электроды в кислую среду, будь то лимон или ванночка с уксусом. Гвоздь послужит нам отрицательным электродом, или анодом. Медную проволоку назначим положительным электродом, или катодом.

В кислой среде на поверхности анода протекает реакция окисления, в процессе которой выделяются свободные электроны. С каждого атома цинка уходит два электрона. Медь — сильный окислитель, и она может притягивать электроны, освобожденные цинком. Если замкнуть электрическую цепь (подключить к импровизированной батарейке лампочку или мультиметр), электроны потекут от анода к катоду через нее, то есть в цепи возникнет электричество.


Картофель — от природы прекрасный корпус и электролит для гальванического элемента. Картошка стабильно давала нам напряжение более 0,5 В с одного элемента, тогда как лимон демонстрировал результат в районе 0,4 В. Чемпион по вольтажу — уксус: 0,8 В с ячейки. Чтобы получить большее напряжение, соединяйте элементы последовательно. Для питания более мощных потребителей (вентилятор) — параллельно.

На поверхности катода, то есть отрицательно заряженного электрода, идет реакция восстановления: катионы (положительно заряженные ионы) водорода, содержащиеся в кислоте, получают недостающие электроны и превращаются в водород, выходящий наружу в виде пузырьков. Около катода возникает концентрация анионов (отрицательно заряженных ионов) кислоты, а около анода — катионов цинка. Чтобы сбалансировать заряды в электролите, необходимо обеспечить ионный обмен между электродами внутри батарейки.


Повышенная кислотность почвы — проблема для агрономов, но радость для электротехников. Содержание ионов водорода и алюминия в земле позволяет буквально воткнуть в горшок две палки (как обычно, цинковую и медную) и получить электричество. Наш результат — 0,2 В. Для улучшения результата почву стоит полить.

Важно понимать: электричество вырабатывается не из лимона или картошки. Это вовсе не та энергия химических связей в органических молекулах, которая усваивается нашим организмом в результате потребления пищи. Электроэнергия возникает благодаря химическим реакциям с участием цинка, меди и кислоты, и в нашей батарейке именно гвоздь служит расходным материалом.

Растегаев Даниил ученик 9 класса МОУ-СОШ №9 г. Аткарска

В исследовательском проекте определяюстя возможности использования лимона как источника тока. Рассчитывается его удельное сопротивление и КПД.

Скачать:

Предварительный просмотр:

Исследование характеристик лимона как источника тока

Растегаев Даниил,

ученик 9 класса

МОУ-СОШ №9 г. Аткарска

Введение.

Использование электрической энергии в настоящее время очень тесно связано с комфортностью проживания человека в современном мире. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получать в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива – водорода, однако управляемые термоядерные реакции пока не освоены и неизвестно, когда они будут использованы для промышленного получения энергии в чистом виде. Человечество ищет альтернативные источники получения электрического тока: ветер, геотермальные воды, энергию приливов и отливов. А может быть, источники тока создала сама природа? И нам остается лишь найти им применение.

Один из таких источников исследуется в данной работе.

Цель проекта:

Исследовать характеристики лимона как источника тока.

Задачи:

  1. Познакомиться с понятиями ЭДС и внутреннее сопротивление.
  2. Изучить закон Ома для полной цепи.
  3. Объяснить процессы, происходящие в лимоне, который используется как источник тока.
  4. Экспериментально определить ЭДС и внутреннее сопротивление лимона, рассчитать удельное сопротивление лимона и мощность лимона, как источника тока.
  5. Рассмотреть возможность использования данного источника тока в практических целях.
  1. ЭДС источника тока.

Электрический ток представляет собой упорядоченное движение заряженных частиц. Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Электрическое поле в проводниках создается и может поддерживаться длительное время источниками электрического тока. Существуют различные виды источников тока:

  1. механические (электрофорная машина);
  2. тепловые (термоэлемент);
  3. световые (фотоэлемент);
  4. химические (гальванический элемент).

Источники тока бывают различные, но в каждом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Любые силы, действующие на электрически заряженные частицы, за исключением кулоновских сил, называют сторонними силами. Внутри источника тока заряды движутся под действием сторонних сил, а во всей остальной цепи – под действием электрического поля. Природа сторонних сил может быть разнообразна.

Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (ЭДС).

  1. Лимон – гальванический элемент.

Лимон - небольшое вечнозеленое плодовое дерево высотой до 5-8 м, с раскидистой или пирамидальной кроной. Встречаются деревья в возрасте 45 лет.

Плоды лимона содержат лимонную кислоту (C 6 H 8 O 7 ). Вещество чрезвычайно распространено в природе: содержится в ягодах, плодах цитрусовых, хвое, стеблях махорки, особенно много её в китайском лимоннике и недозрелых лимонах.

Впервые лимонная кислота была выделена в 1784году из сока недозрелых лимонов шведским аптекарем Карлом Шееле.

В лимоне, как и в гальваническом элементе, природа сторонних сил – химическая. В результате химической реакции происходит растворение цинка в лимонной кислоте. В раствор переходят положительно заряженные ионы цинка, а сама цинковая пластина при этом заряжается отрицательно. Медная пластина заряжается положительно, так как ионы цинка оседают на ней. (см. приложение 1)

Для проведения измерений и эксперимента соберем электрическую цепь по схеме:

  1. Закон Ома для полной цепи.

Рассмотрим электрическую цепь для нашего эксперимента.

Источник тока имеет ЭДС ɛ и сопротивление r. Сопротивление источника тока часто называют внутренним сопротивлением, сопротивление внешнего участка цепи обозначают R.

Георг Симон Ом (16 марта 1787 – 6 июля 1854) - знаменитый немецкий физик. Наиболее известные работы Ома касались вопросов о прохождении электрического тока и привели к знаменитому «закону Ома», связывающему сопротивление цепи электрического тока, внутреннее сопротивление и ЭДС источника тока, силу тока.

Закон Ома для полной цепи:

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна сумме электрических сопротивлений внешнего и внутреннего участков цепи.

  1. Результаты эксперимента.

Соберем экспериментальную цепь для получения необходимых данных. (см. приложение 2)

Измерим ЭДС лимона: ɛ = 0,95В

Измерим силу тока и напряжение на участке цепи при различном внешнем сопротивлении.

U 1 =0,515В U 2 =0,586В

I 1 =196мкА I 2 =160мкА

R 1 =2кОм R 2 =3кОм

По закону Ома для полной цепи рассчитали внутреннее сопротивление лимона: r = 2,1кОм. (см. приложение 3)

Измерим ток короткого замыкания на лимоне: I кз =460мкА. Ток короткого замыкания имеет максимальное значение в том случае, когда внешнее сопротивление цепи R→0.

С помощью полученных измерений мы вычислили удельное сопротивление лимона ƍ=69*10 6 Ом*мм 2 /м. (см. приложение 3)

Также определили КПД и мощность лимона как источника тока

P=108,3*10 -6 Вт

Ƞ= 60%

Несмотря на достаточно большое значение КПД, мощность лимона как источника тока очень маленькое.

Мы попробовали использовать лимон как источник тока. Собрали электрическую цепь из нескольких последовательно соединенных лимонов и диода. Несколько последовательно соединенных лимонов служат батарей гальванических элементов. При последовательном соединении сила тока, которое выдает такой источник остается неизменной, а напряжение равно сумме напряжений на клемах отдельных источников. С помощью 5 последовательно соединенных лимонов мы смогли зажечь два светодиода.

Заключение.

  • Лимон – гальванический элемент, в котором действуют химические сторонние силы.
  • Лимон можно использовать как источник электрического тока.
  • В бытовых целях лимон нельзя использовать как источник тока, так как ток, который выдает лимон, составляет порядка нескольких десятков микроампер, при этом он обладает очень большим внутренним сопротивлением.

Список литературы и других источников:

  1. А.В. Перышкин Физика 8 класс. М:«Дрофа»2009г.
  2. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский Физика 10 класс, М:«Просвещение»2007г.
  3. М.Н. Алексеева Физика – юным. М:«Просвещение»1980г.
  4. И.Г. Кириллова Книга для чтения по физике. М: «Просвещение»1986г.
  5. http://ru.wikipedia.org

Приложение 1

Приложение 2

Приложение 3

Мы вычислили, что внутреннее сопротивление лимона r = 2,1 кОм.

Мы вычислили, что длина между пластинами l = 3,8 см = 0,038 м.

Определили площадь пластин a= 39мм b= 32мм S=ab= 1248 мм 2

Теперь найдем удельное сопротивление лимона по формуле :

Зажгите лампочку с помощью... лимона!

Сложность:

Опасность:

Сделайте этот эксперимент дома

Безопасность

    Перед началом опыта наденьте защитные перчатки и очки.

    Проводите эксперимент на подносе.

Общие правила безопасности

  • Не допускайте попадания химических реагентов в глаза или рот.
  • Не допускайте к месту проведения экспериментов людей без защитных очков, а также маленьких детей и животных.
  • Храните экспериментальный набор в месте, недоступном для детей младше 12 лет.
  • Помойте или очистите всё оборудование и оснастку после использования.
  • Убедитесь, что все контейнеры с реагентами плотно закрыты и хранятся по правилам после использования.
  • Убедитесь, что все одноразовые контейнеры правильно утилизированы.
  • Используйте только оборудование и реактивы, поставляемые в наборе или рекомендуемые текущими инструкциями.
  • Если вы использовали контейнер для еды или посуду для проведения экспериментов, немедленно выбросьте их. Они больше не пригодны для хранения пищи.

Информация о первой помощи

  • В случае попадания реагентов в глаза тщательно промойте глаза водой, при необходимости держа глаз открытым. Немедленно обратитесь к врачу.
  • В случае проглатывания промойте рот водой, выпейте немного чистой воды. Не вызывайте рвоту. Немедленно обратитесь к врачу.
  • В случае вдыхания реагентов выведите пострадавшего на свежий воздух.
  • В случае контакта с кожей или ожогов промывайте поврежденную зону большим количеством воды в течение 10 минут или дольше.
  • В случае сомнений немедленно обратитесь к врачу. Возьмите с собой химический реагент и контейнер от него.
  • В случае травм всегда обращайтесь к врачу.
  • Неправильное использование химических реагентов может вызвать травму и нанести вред здоровью. Проводите только указанные в инструкции эксперименты.
  • Данный набор опытов предназначен только для детей 12 лет и старше.
  • Способности детей существенно различаются даже внутри возрастной группы. Поэтому родители, проводящие эксперименты вместе с детьми, должны по своему усмотрению решить, какие опыты подходят для их детей и будут безопасны для них.
  • Родители должны обсудить правила безопасности с ребенком или детьми перед началом проведения экспериментов. Особое внимание следует уделить безопасному обращению с кислотами, щелочами и горючими жидкостями.
  • Перед началом экспериментов очистите место проведения опытов от предметов, которые могут вам помешать. Следует избегать хранения пищевых продуктов рядом с местом проведения опытов. Место проведения опытов должно хорошо вентилироваться и находиться близко к водопроводному крану или другому источнику воды. Для проведения экспериментов потребуется устойчивый стол.
  • Вещества в одноразовой упаковке должны быть использованы полностью или утилизированы после проведения одного эксперимента, т.е. после открытия упаковки.

Часто задаваемые вопросы

Светодиод не горит. Что делать?

Во-первых, проследите, чтобы пластины в лимоне не касались друг друга.

Во-вторых, проверьте качество соединения крокодилов с металлическими пластинами.

В-третьих, убедитесь, что светодиод подключён верно: чёрный крокодил крепится к короткой «ножке», красный – к длинной. При этом крокодилы не должны касаться другой «ножки», иначе произойдёт замыкание цепи!

Сок около магниевой пластины шипит. Это нормально?

Всё хорошо. Магний – активный металл, и он взаимодействует с лимонной кислотой с образованием цитрата магния и выделением водорода.

Другие эксперименты

Пошаговая инструкция

  1. Возьмите 2 магниевые пластинки из баночки с надписью «Mg».
  2. Приготовьте 2 зажима-крокодила: 1 чёрный и 1 белый. Подсоедините магниевые пластинки к чёрному и белому крокодилам.
  3. Возьмите 2 медные пластины из баночки с надписью «Cu».
  4. Подсоедините медную пластинку к свободному концу белого крокодила. Подсоедините медную пластинку к красному крокодилу.
  5. Разрежьте лимон пополам. Вставьте в одну половинку лимона медную и магниевую пластинки на небольшом расстоянии друг от друга (примерно 1 см). Повторите с двумя оставшимися пластинками, используя вторую половинку лимона. Убедитесь, что пластинки не соприкасаются.
  6. Возьмите светодиод. Подсоедините свободный конец красного крокодила к длинной ножке светодиода. Подсоедините свободный конец чёрного крокодила к короткой ножке светодиода. Cветодиод загорится!

Утилизация

Твёрдые отходы эксперимента утилизируйте вместе с бытовым мусором. Растворы слейте в раковину и затем тщательно промойте её водой.

Что произошло

Почему диод начинает светиться?

В условиях опыта протекает химическая реакция: электроны с магния Mg переходят на медь Cu. Такое движение электронов и есть электрический ток. Проходя через светодиод, он заставляет его светиться. Таким образом, собранная в данном опыте установка действует как батарейка – химический источник тока.

Узнать больше

Участники этого опыта − медь Cu и магний Mg − весьма схожи. Оба они – металлы. Это означает, что они достаточно ковкие, блестят, хорошо проводят электричество и тепло. Все эти свойства – следствия внутреннего строения металлов. Его можно представить как расположенные в определённом порядке положительные ионы, которые удерживаются вместе с помощью общих для всего кусочка металла электронов. Именно из-за этой общности электроны могут «гулять» по всему объёму металла.

Несмотря на общие мотивы в строении, медь и магний отличаются друг от друга. Общая «свора» электронов удерживается в кусочке меди сильнее, чем в случае с магнием. Поэтому чисто теоретически мы можем себе представить процесс, в котором электроны из магния «убегают» к меди. Однако это приведёт к увеличению зарядов: положительного в магнии и отрицательного − в меди. Долго так продолжаться не может: из-за взаимного отталкивания отрицательно заряженным электронам будет невыгодно переходить дальше в медь. Заряд, таким образом, собирается у поверхности соприкосновения двух разных металлов.

Любопытно, что степень переноса электронов с одного металла на другой зависит от температуры. Эту связь используют в электронных устройствах, позволяющих измерять температуру. Простейшим таким прибором, который использует данный эффект, является термопара . Сейчас использование термопар является повсеместным, и именно они лежат в основе электронных термометров.

Вернёмся к нашему опыту. Для того чтобы электроны с магния на медь перебегали постоянно, а сам процесс стал необратимым, необходимо удалять положительный заряд с магния и отрицательный заряд с меди. Здесь в свою роль вступает лимон. Важно, какую среду он создаёт для воткнутых в него медной и магниевой пластин. Всем известно, что лимон имеет кислый вкус преимущественно благодаря содержащейся в нём лимонной кислоте. Естественно, и вода в нём тоже присутствует. Раствор лимонной кислоты способен проводить электричество: при её диссоциации происходит возникновение положительно заряженных ионов водорода H + и отрицательно заряженного остатка лимонной кислоты. Такая среда идеально подходит для удаления положительного заряда с магния и отрицательного заряда с меди. Первый процесс происходит довольно просто: положительно заряженные ионы магния Mg 2+ переходят с поверхности магниевой пластинки в раствор (лимонный сок):

Mg 0 – 2e - → Mg 2+ раствор

Второй процесс происходит на медной пластинке. Поскольку на ней скапливается отрицательный заряд, это притягивает ионы водорода H + . Они способны забирать электроны с медной пластинки, превращаясь сначала в атомы H, а затем почти сразу в молекулы H 2 , которые улетают восвояси:

2H + + 2e - → H 2

Почему нельзя обойтись только одной парой «медь-магний»?

Ближайший аналог системы «медная пластинка – лимон – магниевая пластинка» ¬– это обыкновенная пальчиковая батарейка. Она работает по тому же принципу: происходящие внутри неё химические реакции приводят к возникновению тока электронов, то есть электричества. Вы наверняка замечали, что в некоторых приборах пальчиковые батарейки располагаются подряд (т.е. минусовой полюс одной соприкасается с плюсовым полюсом другой). Чаще они это делают не напрямую, а посредством проводков или небольших металлически пластинок. Но суть остаётся прежней − это нужно, чтобы увеличить силу, которая действует на электроны, а значит – увеличить силу тока.

Так же и медная пластинка в одном кусочке лимона соединяется с магниевой пластинкой другого. Если соединить диод только с одной парой «медь-магний», он не начнёт светиться, а вот использование двух пар приводит к желаемому результату.

Узнать больше

Для описания силы, которая заставляет заряды двигаться, то есть приводит к возникновению электричества, используют понятие напряжение . Например, на любой батарейке указано значение напряжения, которое она может создавать в подключённом к ней приборе или проводнике.

Напряжения, которое создаёт одна пара «магний-медь», недостаточно для данного опыта, но вот двух пар уже хватает.

Почему мы используем именно медь и магний? Можно ли взять какую-то другую пару металлов?

Все металлы по-разному способны удерживать электроны. Это позволяет выстроить их в так называемый электрохимический ряд . Металлы, которые стоят в этом ряду левее, удерживают электроны хуже, а те, что правее, – лучше. В нашем опыте электрический ток возникает именно из-за разницы между медью и магнием в их способности удерживать электроны. В электрохимическом ряду медь стоит значительно правее магния.

Мы вполне можем взять два других металла – необходимо лишь, чтобы между их желанием удерживать при себе электроны была достаточная разница. Например, в этом опыте вместо меди можно использовать серебро Ag, а вместо магния – цинк Zn.

Тем не менее, мы выбрали именно магний и медь. Почему?

Во-первых, они весьма доступны, в отличие от того же серебра. Во-вторых, магний – металл, который одновременно сочетает в себе достаточную активность и стабильность. Подобно щелочным металлам – натрию Na, калию K и литию Li – он легко окисляется, то есть отдаёт электроны. С другой стороны, поверхность магния покрыта тонкой плёнкой его оксида MgO, которая не разрушается при нагревании вплоть до 600 o C. Она защищает металл от дальнейшего окисления на воздухе, что делает его весьма удобным в использовании на практике.

Какие ещё фрукты и овощи можно использовать вместо лимона?

Многие фрукты и овощи подойдут для этого опыта. Достаточно лишь наличия у них сочной мякоти. Например, вместо лимона можно взять яблоко, банан, помидор или картофель. Даже крупная виноградина подойдёт!

Во всех этих овощах, фруктах и ягодах достаточно воды, а также веществ, которые диссоциируют (распадаются на заряженные частицы − ионы) в воде. Поэтому в них тоже может протекать электрический ток!

Что такое диод и как он устроен?

Диоды – это маленькие приборы, способные пропускать через себя электрический ток и выполнять при этом какую-то полезную работу. В данном случае речь идёт о светодиоде – при пропускании электрического тока он светится.

Все современные диоды содержат в своей основе полупроводник – особый материал, электропроводность которого не очень велика, но может вырастать, например, при нагревании. Что такое электропроводность? Это способность материала проводить через себя электрический ток.

В отличие от простого кусочка полупроводника, любой диод содержит два его «сорта». Само название «диод» (от греч. «δίς») означает, что в его составе есть два элемента – обычно их называют анод и катод .

Анод диода состоит из полупроводника, содержащего так называемые «дырки» − области, которые могут быть заполнены электронами (фактически пустые полочки специально для электронов). Эти «полочки» могут достаточно свободно перемещаться по всему аноду. Катод диода тоже состоит из полупроводника, но другого. Он содержит электроны, которые тоже могут относительно свободно двигаться по нему.

Оказывается, что такой состав диода позволяет электронам легко двигаться через диод в одну сторону, но практически не позволяет двигаться им в обратном направлении. Когда электроны движутся от катода к аноду, на границе между ними происходит встреча «свободных» электронов в катоде и электронных вакансий (полочек) в аноде. Электроны с удовольствием занимают эти вакансии, и ток двигается дальше.

Представим, что электроны двигаются в обратном направлении – им нужно слезть с уютных полочек в материал, где этих полочек нет! Очевидно, это им не выгодно и ток в этом направлении не пойдёт.

Таким образом, любой диод может выступать в роли своего рода клапана для электричества, которое проходит через него в одну сторону, но не проходит в другую. Именно это свойство диодов позволило использовать их в качестве основы для вычислительной техники – любой компьютер, смартфон, ноутбук или планшет содержит в своём составе процессор, в основе которого – миллионы микроскопических диодов.

У светодиодов, конечно же, другое применение – в освещении и индикации. Сам факт возникновения света связан с особым подбором полупроводниковых материалов, из которых состоит диод. В некоторых случаях тот самый переход электронов с катода в вакансии анода сопровождается выделением света. В случаях разных полупроводников происходит свечение разных цветов. Важными преимуществами диодов по сравнению с другими электрическими источниками света являются их безопасность и высокая эффективность – степень преобразования энергии электрического тока в свет.

Для любителей всякого рода экспериментов и опытов предлагаем необычную идею - попробовать соорудить собственными руками примитивную батарейку из кисленьких лимонов. Мы тратим массу денег на батарейки, аккумуляторы для питания телефонов, часов, игрушек, совершенно не задумываясь о том, что нас окружает масса недорогих энергетических источников, из которых мы собственноручно можем в любой момент собрать экономный и простенький гальванический элемент. Мы даже не предполагаем, сколько интересного нас окружает!

Для проведения эксперимента нам понадобятся, как я уже упоминал выше, лимоны (8 штук), 9 тоненьких проводов с зажимами, 8 небольших кусков медной проволоки и столько же оцинкованных гвоздей, часы с батарейкой, ну и, конечно же, вольтметр для испытания возможностей (напряжения) сооруженной нами батарейки.

Легенько размяв в руках лимоны, втыкаем в каждый из них кусочек медной проволоки и один оцинкованный гвоздь. Берем часы, вынимаем из них батарейку, и с помощью проводов создаем электрическую цепь, как на рысунке. Свободные концы проводов из первого и восьмого лимона подключаем к часам в тех местах, где находилась ранее батарейка, создавая замкнутую цепь. По окончанию эксперимента мы увидим, как пойдут часы. Подсоединив концы проводов к вольтметру, сможем наблюдать напряжение величиной 0,49 V.

Обьяснить работу нашей фруктовой батарейки просто. При контакте меди и цинка с лимонной кислотой происходит химическая реакция, в результате которой медь становиться положительно заряженной, а цинк – отрицательно. При замкнутой цепи, созданной при помощи медной проволоки и небольших оцинкованных гвоздей, начинает действовать электрический ток. Цинк (источник электронов) – это отрицательный полюс фруктовой батарейки , медь – положительный. Напряжение в батарейки связано со способностью цинка и меди отдавать электроны. Электрический же ток зависит от количества электронов, высвобождаемых при пробегаемой химической реакции.

Если дома не окажется лимонов, в качестве основного материала для эксперимента можно использовать любые другие цитрусовые, киви, бананы, яблоки, груши, картофель, помидоры, огурцы, луковицы. Эти овощи и фрукты также могут работать в качестве батарейки, правда напряжение у них будет несколько отличаться от лимонного источника тока. Наиболее высокое напряжение даст груша, наиболее низкою - киви. На электрические характеристики создаваемых батареек влияет кислотность применяемых продуктов. Соединив несколько фруктовых батареек последовательно, мы добьемся увеличения напряжения, пропорционально количеству используемых фруктов.

Пару медь и цинк можно подменить иными составляющими, например, медью и алюминием, алюминием и цинком. Правда, в последнем случае батарейка получиться несколько слабее "оригинальной" лимонной.

Вышеописанный эксперимент является прямым подтверждением того, что для удовлетворения своих энергетических потребностей человек может свободно использовать природные возобновляемые материалы. Ряд компаний в промышленных масштабах уже начал заниматься созданием необычных аккумуляторных батарей с применением продуктов переработки бананов, апельсиновых корок. Компания Sоnу не так давно презентовала публике батарейку, в которой вместо электролита использован фруктовый сок. Заправив батарейку 8 мл сока, можно обеспечить питание небольшой портативной электроники в течение одного часа. Ученые из Великобритании создали аналогичный вариант аккумулятора для маломощного компьютера с процессором Iпtе1 386. Экспериментально было доказано, что 12 картофелин могут стать полноценных источником энергетического питания компьютера в течение 12 дней.

Природные аккумуляторы электрической энергии, батарейка из фруктов – возможно ли это? Давайте попробуем разобраться с этим вопросом в нашей лаборатории.

Нужно отметить, что этот эксперимент хорош своей простотой и наглядностью. Его можно использовать как для школьного научного проекта (особенно, добавив теоретический раздел), так и в виде развлечения устроив неплохую презентацию, например, для друзей. Замечательно подойдет этот опыт и если вы просто решили с пользой провести время с ребенком – и весело, и познавательно!

В предыдущей статье об мы немного затронули историю создания батарейки, узнали, откуда в ней берется электричество, рассмотрели протекающие в гальваническом элементе процессы. А невероятно полезный метод познания окружающего мира под названием «Что там внутри?» помог нам посмотреть, из чего состоит батарейка. Правда, пришлось разломать несколько гальванических элементов, но в этой статье, обещаю, мы ломать ничего не будем. Только созидать!

Что нам для этого понадобится? Как мы уже выяснили, любой гальванический элемент состоит из электродов и электролита. Следуя традиции, никаких экзотических или труднодоступных материалов мы использовать не будем. Если вам захочется повторить эксперимент, потребуется следующее:

  • Овощи или фрукты, которые есть у вас под рукой. Только не говорите окружающим, для чего они вам нужны, а то в следующий раз, когда вам захочется, скажем, апельсинчика, вам не дадут – скажут, мол, опять собираешься продукты переводить 🙂 Они будут исполнять роль электролита в нашей партии батарейки (а точнее, содержащийся в них фруктовый сок, который благодаря фруктовым кислотам выполняет роль ионообменной среды).
  • Железные и оцинкованные гвозди. Если нет оцинкованных гвоздей, можете взять кусочки оцинкованной жести. Если после предыдущей статьи по устройству батареек у вас остался цинковый корпус – самое время достать его из заветной коробочки. Как вы поняли, все это будет выполнять роль электродов.
  • Несколько проводков. Я взял несколько жил от многожильного кабеля типа «витая пара». Провода нам нужны для того, чтобы организовать электрическую цепь – тот самый мостик, по которому электроны бегут от одного электрода к другому.
  • Ну и конечно же нам потребуется потребитель тока – зачем нам электричество, если нам некуда его тратить. В качестве потребителя стОит использовать что-нибудь маломощное: например калькулятор или светодиод. Что-либо помощнее, например, лампу накаливания, брать не стоит. Хотя, последним замечанием можно пренебречь, если у вас перед домом стоит грузовик с лимонами.

Разложим компоненты на нашем лабораторном столе.

Зачищаем от изоляции концы проводов.

Начинаем погружать электроды в электролит. Ну а если по-простому – то втыкать гвозди и пластины в заготовленные съестные припасы. Сначала один электрод…

… а затем и другой.

На концах электродов закрепляем провода.

Гальванический элемент готов! Половинка лимона показывает почти полвольта.

Проделав все вышеописанные процедуры с яблоком, видим, что гальванический элемент из этого фрукта дает аналогичное напряжение.

Аналогичное напряжение обеспечивает и апельсин.

А вот лук преподнес сюрприз. Батарейка из него получилась высоковольтная 🙂

А теперь давайте посмотрим, на что способна вся эта наша фруктово-электрическая братия. Конечно, каждый из этих элементов мало на что способен. Разве что просто продемонстрировать с помощью вольтметра, что электричество они вырабатывают на самом деле. Гораздо более эффектным будет демонстрация работы потребителей тока от наших фруктовых батареек. Как я уже отметил, напряжения, выдаваемого отдельным фруктовым гальваническим элементом, будет недостаточно для питания даже маломощных потребителей тока. Следовательно, нам нужно повысить напряжение. Этого можно достигнуть путем соединения нескольких гальванических элементов по последовательной схеме, т.е. вот так:

После соединения всех наших гальванических элементов в батарею получаем уже вполне солидное напряжение.

Попытаемся подключить светодиод (при подключении необходимо соблюсти полярность)… Горит!!!

Даже старый калькулятор, который я уже давно перестал считать рабочим, заработал от фруктовой батареи!

Ну что ж, опыт удался! Как видим, батарейка из фруктов вполне реальна. Конечно, как серьезный источник питания ее рассматривать нельзя. Но как отличный наглядный материал о природе электричества, который для непосвященных может выглядеть даже немного мистически, — вполне!

Удачи вам в ваших экспериментах!