Индикатор электромагнитных полей своими руками. Самодельный измеритель свч-излучения

Настроение сейчас -

Индикатор напряженности поля может потребоваться при налаживании радиостанции или передатчика, если нужно определить уровень радиосмога и найти его источник или при поиске и обнаружении скрытых передатчиков ("шпионских радиомикрофонов"). Можно обойтись без осциллографа, даже можно обойтись без тестера, но без индикатора ВЧ поля, никогда! При кажущейся простоте - это прибор, который обладает исключительной надежностью и работает безотказно в любых условиях. Самое прекрасное, что настраивать его практически не надо (если выбраны те компоненты, которые указаны в схеме) и ему не требуется никакого внешнего питания.


схему можно сделать еще проще - и все равно будет прекрасно работать...

Как работает схема?
Сигнал с передатчика с антенны W1, через конденсатор С1 поступает на диодный детектор на VD1 и VD2, построенный по схеме удвоения напряжения. В результате на выходе детектора (правый конец диода VD2) формируется постоянное напряжение, пропорциональное интенсивности сигнала, поступающего на антенну W1. Конденсатор С2 является накопительным (если бы мы говорили о блоке питания, про него сказали «сглаживает пульсации»).

Далее продетектированное напряжение поступает либо на индикатор на светодиоде VD3, либо на амперметр, либо на вольтметр. Перемычка J1 нужна для того, чтобы было возможно отключать светодиод VD3 во время проведения измерений по приборам (он, естественно вносит сильные искажения, причем нелинейные), но в большинстве случае его можно и не отключать (если измерения носят относительный характер, а не абсолютный)
Конструкция.
От конструкции зависит очень много, прежде всего необходимо решить как вы будете использовать данный индикатор: как пробник, или как измеритель интенсивности электромагнитного поля. Если как пробник, то можно ограничится только установкой светодиода VD3. Тогда при поднесении данного индикатора к антенне передатчика он будет гореть, чем ближе к антенне, тем сильнее. Такой вариант я очень рекомендую сделать все, чтобы иметь в кармане, для «полевых испытаний аппаратуры» - элементарно просто поднести его к антенне передатчика или радиостанции, чтобы убедиться, что ВЧ часть работает.
Если необходимо измерять интенсивность (т.е. давать численные значения – это необходимо будет при настройке ВЧ-модуля), необходимо будет ставить либо вольметр, либо амперметр. На фотографиях ниже представлен гибридный вариант.


Что касается деталей, то особых требований нет. Конденсаторы самые обычные, можно SMD, можно обычные в выводных корпусах. Но, хочу предупредить схема очень чувствительна к типам диодов. С некоторыми может вообще не работать. На схеме представлены те типы диодов, с которыми она гарантированно работает. Причем лучший результат дали старые германиевые диоды Д311. При их использовании схема работает до 1 гГц (проверено!), во всяком случае какое-то напряжение на выходе разглядеть можно. Если сразу не заработало – ОБЯЗАТЕЛЬНО попробуйте другую пару диодов (как одного типа, так и разных), т.к. часто результат работы меняется в зависимости от экземпляра.
Приборы амперметр на ток до 100 мкА или вольтметр до 1 В, можно до 2-3 В.

Налаживание.
Налаживание, в принципе не требуется, все должно работать. Цель налаживания проверка работоспособности – увидеть отклонение стрелки прибора, или зажигания светодиода. Но, все-таки, я бы рекомендовал попробовать даже нормально работающий индикатор в разными типам диодов, имеющихся в наличии – может существенно увеличиться чувствительность. В любом случае надо добиваться максимального отклонения стрелки прибора
Если у вас еще не собран передатчик или у вас просто нет доступа к чему-то работающему и дающему хорошее ВЧ-поле (например, ВЧ генератора, типа Г4-116) то, чтобы проверить работу пробника можно съездить в Останкино (метро «ВДНХ») или на Шаболовскую (метро «Шаболовская»). В Останкино этот индикатор работает даже в троллейбусе, когда проезжаешь мимо башни. На Шаболовской, надо подойти почти вплотную к самой башне. Иногда источником мощных ВЧ полей служит бытовая аппаратура, если антенну пробника расположить около сетевого провода мощной нагрузки (например, утюга или чайника), то путем периодического включения-выключения можно тоже добиться отклонения стрелки прибора. Если у кого-то есть радиостанция, то для проверки работы она вполне подойдет тоже (надо его поднести к антенне, пока радиостанция находится в режиме передачи). В качестве другого варианта можно – можно использовать сигнал к кварцевого генератора от какой-либо бытовой аппаратуры (например, видеоигры, компьютера, видеомагнитофона) – для этого надо «внутри этой аппаратуры» найти кварцевый резонатор на частоту от 0.5 мГц до 70 мГц и просто прикоснуться антенной W1 к одному из его выводов (либо поднести к одному из выводов).
Столь подробное описание проверки работы пробника носит только одну цель – до постройки ВЧ модуля передатчика надо быть на 100% уверенным, что ВЧ индикатор работоспособен! ЭТО ОЧЕНЬ ВАЖНО! Пока не убедитесь, что ВЧ индикатор работает приниматься за постройку передатчика бесполезно.
Так это может выглядеть (видно, что горит VD3, естественно J1 подключена и подключен вольтметр на диапазон 2.5 В):


Перспективы и использование.
Для налаживания передатчика вместо жесткой антенны можно использовать гибкий, многожильный. При этом можно либо просто припаивать его к измеряемым точкам схемы, либо если другим проводом массу индикатора (точку соединения VD1, С2, VD3) соединить с массой налаживаемой ВЧ системы просто подносить этот гибкий антенный провод к тестовой точке или контуру (не припаивая). Если на контуре нет экрана – иногда бывает достаточно просто поднести антенный провод индикатора к катушке контура. В данном случае все зависит от интенсивности ВЧ напряжения в измеряемой системе.
Вместо амперметра или вольтметра можно попробовать подключить наушники – тогда можно будет услышать сигнал передатчика, так например, рекомендуется делать в книге Борисова «Юный радиолюбитель».
Этот же пробник (если подключен вольтметр), зная частоту на которой работает ВЧ система может помочь довольно точно измерить мощность сигнала. При этом надо снять показания прибора на минимально возможном расстоянии от антенны, затем чуть дальше (измерив это расстояние линейкой), затем подставив в формулу (ее надо поискать в справочниках - на память я не помню) получить значение в dB. Естественно, то желательно данную операцию провести, например, с радиостанцией мощность которой известна, и только потом измерять мощность неизвестно источника. Конечно надо учитывать, что частоты эталонной радиостанции и вашего источника одни и те же, т.к. хоть в нашем случае в описанном пробнике нет входного контура он все же обладает частотоизбирающими свойствами за счет конструкции (длина антенны, емкости монтажа и т.д.)

Схема простого индикатора поля , основой которого является дешёвая распространённая микросхема ОУ LM358, имеет 2 уровня индикации на светодиодах. Для увеличения - клик на картинку.

На чувствительность схемы влияют, прежде всего, антенна и диоды VD1, VD2. Подойдут такие диоды: «ГИ401А, Б; 1И401А, Б; АИ402, 3И402; 1И403, ГИ403». Так как у меня не было ни одного из перечисленных диодов, пришлось подбирать другие по наивысшей чувствительности. Подошли детекторные германиевые диоды «АА143». Напряжение работы ВЧ индикатора 6-12В. Ток потребления схемы 0,4-1 мА в режиме ожидания. Ток в режиме детекции зависит от потребляемого тока светодиодов и номиналов резисторов R4,R5. Светодиоды пришлось немного подшлифовать для рассеивания света.


Пороги индикации выставляются переменными резисторами R2,R3. Если нет резисторов R2,R3 номиналами как в схеме, то их можно подобрать таким способом: Если R2,R3~1к, то R1~30к; R2,R3~5к, то R1~150к; R2,R3~10к, то R1~300к и так далее соблюдая соотношение.


Настраивать R2,R3 нужно после полной пайки всех компонентов (включая антенну), отчистки платы от флюса (в моем случае канифоль) и прочих загрязнений, так как ОУ очень чувствителен к таким факторам. Индикатор ВЧ поля реагирует на излучение мобильных телефонов (GSM, GPRS, EDGE, 3G, WiFi), радиопередатчиков, импульсных БП, экрана телевизора, ЛДС. Если применить терминологию металлоискателей, то устройство похоже на «пинпоинтер», только для электромагнитного излучения. Для наглядности работы устройства, фото с включенным радиопередатчиком:

Есть излучение

Мощное излучение


От конденсатора С5 (от кружка) идет перемычка на минус питания схемы.

Часто возникает необходимость произвести простейшую проверку исправности передатчика RC, исправен ли он и его антенна, излучает ли передатчик в эфир электромагнитные волны. В этом случае большую помощь окажет простейший индикатор электромагнитного поля. С его помощью можно проверить работу выходного каскада любого передатчика используемого в моделизме в диапазоне от нескольких МГц и до 2,5 ГГц. Им можно так же проверить работу сотового телефона на передачу.

В основе приборчика применён детектор с удвоением напряжения на СВЧ диодах типа КД514 советского производства. Принцип работы понятен из принципиальной схемы. К точке соединения диодов подключается антенна длиной 20.....25 см из проволоки диам. 1.....2 мм. К диодам подключен фильтрующий конденсатор (трубчатый, керамический) емкостью примерно 2200 пкФ. Диоды с конденсатором подпаиваются к клеммам микроамперметра, который является прибором индикации наличия электромагнитного поля. Катод правого по схеме диода подпаивается к клемме "+" , а анод левого по схеме диода подпаивается к клемме "-". Антенна индикатора может располагаться на расстоянии от нескольких сантиметров (передатчик на 2,4 ГГц или сотовый телефон) до 1 метра,
если передатчик работает в диапазоне 27.........40 Мгц. Такие передатчики имеют телескопическую антенну.
Все детали расположены на кусочке текстолита. Фильтрующий конденсатор расположен снизу платки и его на фото не видно.

Принципиальная схема

Фотографии.



Обычный школьный компас чутко реагирует на магнитное поле. Достаточно, скажем, пронести перед его стрелкой намагниченный конец отвертки, как стрелка отклонится. Но, к сожалению, после этого стрелка будет некоторое время по инерции раскачиваться. Поэтому пользоваться таким простейшим прибором для определения намагниченности предметов неудобно. Необходимость же в таком измерительном устройстве возникает нередко.


Собранный из нескольких деталей индикатор оказывается совершенно неинерционным и сравнительно чувствительным, чтобы, к примеру, определить намагниченность лезвия бритвы или часовой отвертки. Кроме того, подобный прибор пригодится в школе для демонстрации явления индукции и самоиндукции.

Каков принцип работы схемы индикатора магнитного поля? Если вблизи катушки, лучше всего со стальным сердечником, пронести постоянный магнит, его силовые линии пересекут витки катушки. На выводах катушки появится ЭДС, величина которой зависит от напряженности магнитного поля и числа витков катушки. Остается усилить снимаемый с выводов катушки сигнал и подать его, например, на лампу накаливания от карманного фонаря.

Датчиком является катушка индуктивности L1, намотанная на железном сердечнике. Она подключена через конденсатор С1 к усилительному каскаду, выполненному на транзисторе VT1. Режим работы каскада задается резисторами R1 и R2. В зависимости от параметров транзистора (статический коэффициент передачи и обратный ток коллектора) оптимальный режим работы устанавливают переменным резистором R1.


Принципиальная схема индикатора магнитного поля

В эмиттерную цепь транзистора первого каскада включен составной транзистор VT2-VT3 из транзисторов разной структуры.

Нагрузкой этого транзистора является сигнальная лампа HL1. Для ограничения максимального коллекторного тока транзистора VT3 в цепи базы транзистора VT2 стоит резистор R3.

Как только вблизи сердечника датчика окажется намагниченный предмет, появившийся на выводах катушки сигнал усилится, и сигнальная лампа на мгновение вспыхнет. Чем больше предмет и сильнее его намагниченность, тем ярче вспышка лампы.

Схема индикатора магнитного поля, вроли датчика лучше всего использовать катушку с сердечником от электромагнитных реле РСМ, РЭС6, РЗС9 или других, сопротивлением обмотки не менее 200 Ом. Учтите, чем больше сопротивление обмотки, тем более чувствительным будет индикатор.

Неплохие результаты получаются с самодельным датчиком. Для него берут отрезок стержня диаметром 8 и длиной 25 мм из феррита 600НН (от магнитной антенны карманных приемников). На длине примерно 16 мм на стержень наматывают внавал 300 витков провода ПЭВ-1 0,25...0,3, размещая их равномерно по всей поверхности. Сопротивление обмотки такого датчика примерно 5 Ом. Чувствительность датчика, необходимая для работы прибора, обеспечивается благодаря высокой магнитной проницаемости сердечника. Чувствительность зависит также от статического коэффициента передачи тока транзисторов, поэтому желательно использовать транзисторы с возможно большим значением этого параметра. Кроме того, транзистор VT1 должен быть с небольшим обратным током коллектора. Вместо МП103А можно применить КТ315 с любым буквенным индексом, а вместо МП25Б - другие транзисторы серий МП25, МП26, обладающие коэффициентом передачи не менее 40.

Схема индикатора магнитного поля расположение радиокомпонентов. Часть деталей индикатора смонтируйте на плате из любого изоляционного материала (гетинакс, текстолит, оргалит) . Монтаж навесной, для подпайки выводов деталей установите на плате шпильки длиной 8...10 мм из толстого (1...1.5 мм) облуженного медного провода. Вместо шпилек можно расклепать на плате пустотелые заклепки либо установить небольшие скобки из жести от консервной банки. Так же поступайте в дальнейшем при изготовлении плат для навесного монтажа. Соединения между шпильками ведите голым луженым монтажным проводом, а в случае пересечения проводников надевайте на один из них отрезок поливинилхлоридной трубки либо кембрика.



Монтажная плата индикатора магнитного поля

После монтажа деталей к плате подпаивают проводниками в изоляции датчик, переменный резистор, сигнальную лампу, выключатель и источник питания. Включив питание, устанавливают движок переменного резистора в такое положение, чтобы нить накала лампы едва светилась. Если же нить сильно раскалена даже при верхнем по схеме положении движка, следует заменить резистор R2 другим, с большим сопротивлением.

Перед сердечником датчика помещают ненадолго небольшой магнит. Лампа должна ярко вспыхнуть. Если же вспышка слабая, это свидетельствует о малом коэффициенте передачи транзистора VT1. Его желательно заменить.

Затем к сердечнику датчика нужно приблизить конец намагниченной отвертки. Намагнитить ее нетрудно несколькими касаниями сравнительно сильного постоянного магнита, например магнита динамической головки мощностью 1 Вт. С намагниченной отверткой яркость вспышки сигнальной лампы будет меньше, чем с постоянным магнитом. Совсем слабой будет вспышка, если вместо отвертки использовать намагниченное лезвие безопасной бритвы.

Во время работы индикатора переменным резистором устанавливайте сначала возможно меньшую яркость свечения лампы, а затем уже подносите к сердечнику датчика испытываемый предмет. При проверке слабо намагниченных предметов яркость сигнальной лампы немного увеличивают, чтобы лучше было заметно ее изменение.

Как уже было сказано, вокруг проводника с током образуется магнитное поле. Если включить, скажем, настольную лампу, то такое поле будет вокруг проводов, подводящих к лампе сетевое напряжение. Причем поле будет переменным, изменяющимся с частотой сети (50 Гц). Правда, напряженность поля невелика, и обнаружить его можно лишь чувствительным индикатором - о его устройстве будет рассказано позже.

Совсем иначе обстоит дело с работающим паяльником. Его нагревательная обмотка (спираль) выполнена в виде катушки, и вокруг нее образуется достаточно мощное магнитное поле, которое можно зафиксировать сравнительно простым индикатором.


Принципиальная схема индикатора переменного магнитного поля

Входная часть индикатора напоминает такую же часть предыдущего прибора: та же катушка индуктивности L1 с конденсатором С1, то же построение схемы первого каскада на транзисторе VT1. Только цепочка из двух резисторов в цепи базы транзистора заменена одним резистором R1, сопротивление которого уточняется в процессе настройки прибора. Транзистор же взят германиевый структуры р-n-р.

В исходном состоянии транзисторы VT1 и VT2 открыты настолько, что между выводами коллектора и эмиттера транзистора VT2 небольшое напряжение (т. е. транзистор VT2 находится почти в насыщенном состоянии). Поэтому транзисторы VT3 и VT4 открыты незначительно, и лампа HL1 едва светится.

Схема индикатора переменного магнитного поля, работа: как только к датчику приближают нагревательный элемент паяльника, на выводах катушки датчика появляется сигнал переменного тока. Он усиливается транзисторами VT1, VT2. В результате транзистор VT2 начинает закрываться, и напряжение между его выводами эмиттера и коллектора возрастает. Начинают работать транзисторы VT3, VT4, ток через лампу увеличивается, она будет светиться. Чем меньше расстояние между нагревательным элементом и датчиком, тем ярче светится лампа.

Схема индикатора настройка. Лампа засветится уже на расстоянии примерно 100 мм от датчика до паяльника мощностью 35...40 Вт. Это расстояние определяется чувствительностью индикатора. Оно будет еще больше, если используется паяльник мощностью 50 или 100 Вт.

Первые два транзистора могут быть серий МП39 - МП42 со статическим коэффициентом передачи тока 15...25, VT3 - того же типа, но с коэффициентом передачи 50...60. С таким же коэффициентом передачи следует подобрать и транзистор VT4 (он может быть серий МП25, МП26). Постоянные резисторы - МЛТ-0,25, подстроечный - СПЗ-16 или другой малогабаритный. Датчик и сигнальная лампа - такие же, что и в предыдущей конструкции, конденсатор - бумажный, например МБМ.

Часть деталей индикатора можно смонтировать на монтажной плате навесным способом, как это было в предыдущей конструкции.

По своему выбору можете изготовить (или приспособить имеющийся) корпус, установив на его верхней панели лампу и выключатель питания, а внутри расположив плату с батареей 3336. Датчик размещают либо на верхней панели, либо на боковой стенке.

Перед налаживанием индикатора движок подстроечного резистора R2 устанавливают в верхнее по схеме положение, а вывод коллектора транзистора VT2 отключают от вывода базы VT3 и резистора R3. Подав выключателем SA1 питание, устанавливают движок подстроечного резистора в такое положение, чтобы лампа HL1 светилась примерно вполнакала. При этом на выводах коллектора и эмиттера транзистора VT4 должно быть падение напряжения около 1,5 В.

Затем включают в цепь эмиттера транзистора VT2 миллиамперметр на 5...10 мА, подсоединяют вывод коллектора к резистору R3 и выводу базы транзистора VT3, подают питание и измеряют ток эмиттера транзистора VT2. Подбором резистора R1 устанавливают его равным 1,5...2,5 мА в зависимости от установленного общего сопротивления резисторов R2 и R3. Этот ток можно установить и без миллиамперметра - по едва заметному накалу нити сигнальной лампы. Когда же к датчику подносят нагревательный элемент паяльника, ток должен падать до 1 ...0,5 мА, а яркость свечения лампы возрастать.

В процессе работы схемы индикатора напряжение батареи питания будет снижаться, и начальную яркость свечения лампы придется увеличивать подстроечным резистором.

Этот индикатор может найти применение в качестве автоматического переключателя мощности паяльника. Для этого на подставке для паяльника напротив нагревателя (на расстоянии 50...60 мм) нужно расположить датчик, а вместо лампы включить электромагнитное реле с током срабатывания 20...40 мА при напряжении 3,5...4 В. Нормально замкнутые контакты реле включают последовательно с одним из проводов питания паяльника, а параллельно контактам подключают резистор мощностью 10...20 Вт сопротивлением 200...300 Ом. Когда паяльник кладут на подставку, реле срабатывает и его контакты включают последовательно с паяльником гасящий резистор. Напряжение на паяльнике снижается примерно на 50 В, и жало паяльника немного остывает.

Как только паяльник снимают с подставки, реле отпускает, и на паяльник подается полное сетевое напряжение. Жало быстро разогревается до нужной температуры. Благодаря такому режиму работы жало будет служить дольше, а электроэнергии расходоваться меньше.

Очень часто в самый неподходящий момент теряются важные металлические детали или инструменты. Потерявшаяся где-нибудь в высокой траве отвертка, упавшие за шкаф или в полость пассатижи способны испортить настроение. В такие моменты может выручит простое приспособление - магнитный индикатор со световой и звуковой сигнализацией схему которого мы и рассмотрим.

Способен поймать слабое электромагнитное поле сетевых проводов, по которым протекает переменный ток. Такой прибор нужен для профилактики повреждения сетевых проводов при сверлении отверстий в стене. Собрать его очень легко, а готовые аналоги стоят дорого