Параметрические преобразователи резистивные индуктивные емкостные. Резистивные измерительные преобразователи

Выходной величиной в параметрических преобразователях является параметр электрической цепи – электрическое сопротивление или его со­ставляющие (R, L, C). Для использования параметрического преобра­зователя необходим дополнительный источник питания, обеспечиваю­щий образование выходного сигнала преобразователя.

К наиболее часто применяемым параметрическим преобразователям относятся реостатные , тензочувствительные (тензорезисторы ), термочувствительные (терморезисторы или термометры сопротивления ), индуктивные , емкостные, оптоэлектронные (фоторезисторы, фотодиоды и др.), ионизационные и др.

Принцип действия реостатных преобразователей основан на измене­нии электрического сопротивления проводника под влиянием входной величины – механического перемещения. Реостатный преобразователь (рис.3.1) представляет собой реостат, подвижный контакт которого переме­шается под действием измеряемой неэлектрической величины. Обмотку преобразователя изготавливают из сплавов (платина с иридием, константан, нихром, фехраль и др.).

Подобные преобразователи об­ладают статической характеристикой преобразования со ступенчатым характером, поскольку сопротивление измеряется скачками, равными соп­ротивлению одного витка, что вызывает погрешность

где DR – сопротивление одного витка;

R – полное сопротивление преобразователя.


Эта погрешность отсутствует в реохордных преобразователях, в ко­торых щетка скользит вдоль оси проволоки.

Для получения нелинейной функции преобразования приме­няют функциональные реостатные преобразователи. Нужный ха­рактер преобразования часто достигается профилированием кар­каса преобразователя (рис.3.1, в).

Достоинства реостатного преобразователя: относительная просто­та конструкции, возможность получения высокой точности преобразо­вания и значительных по уровню выходных сигналов. Основной недос­таток – наличие скользящего контакта.

Тензоэффект , положенный в основу работы тензорезисторов , заклю­чается в измерении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Если проволоку подвергнуть механическому воздействию, на­пример, растяжению, то сопротивление ее изменится. Относитель­ное изменение сопротивления проволоки

DR/R = S ∙ Dl/l ,

где S – коэффициент тензочувствительности;



Dl/l – относительная де­формация проволоки.

Изменение сопротивления проволоки при механическом воз­действии на нее объясняется изменением геометрических разме­ров (длины, диаметра) и удельного сопротивления материала.

Тензочувствительные проволочные преобразователи представляют собой тонкую зигзагообразно уложенную и приклеенную к подложке проволоку. Преобразователь устанав­ливают таким образом, чтобы направление ожидаемой деформации совпадало с продольной осью проволочной решетки. В качестве материа­ла для преобразователя обычно используют константановую проволоку (у константана – малый температурный коэффициент сопротивления) и для подложки – тонкую бумагу (0,03…0,05 мм) и плёнку лака либо клея (БФ-2, БФ-4, бакелитовый и др.).

Распространение также получили фольговые преобразователи , у которых вместо проволоки используется фольга, и пленочные тензорезисторы , получаемые путем возгонки тензочувствительного матери­ала с последующим осаждением его на подложку.

Достоинства тензорезисторов: линейность статической характерис­тики преобразования, простота конструкции и малые габариты. Основной недостаток – низкая чувствительность.

В тех случаях, когда требуется высокая чувствительность, находят применение полупроводниковые тензочувствительные преобразователи (поли­кристаллические из порошкообразно­го полупроводника и монокристалли­ческие из кристалла кремния). Поскольку чувствительность полупровод­никовых тензорезисторов в десятки раз выше, чем у металлических, и, кроме того, интег­ральная технология позволяет в одном кристалле кремния формировать одно­временно как тензорезисторы, так и микроэлектронный блок обработки, то в последние годы получили преимущественное развитие интегральные полу­проводниковые тензочувствительные преобразователи. Такие элементы реализуются либо по технологии диффузионных резисторов с изоляцией их от проводящей кремниевой подложки p-n-переходами – технология «крем­ний на кремнии», либо по гетероэпитаксиальной технологии «кремний на диэлектрике» на стеклокерамике, кварце или сапфире. Для тензочувствительных преобразователей, осо­бенно полупроводниковых, сущест­венно влияние температуры на их упругие и электрические характеристики, что требует применения специальных схем температурной компенсации по­грешностей (в частности, с этой целью в расширенной схеме тензомоста ис­пользуются компенсационные резис­торы и терморезисторы). Особенно широкое применение в изготовлении измерительных преобразователей давления в силу сво­их высоких механических, изолирую­щих и теплоустойчивых качеств полу­чила технология КНС – «кремний на сапфире».



Совершенствование технологии изготовления полупроводниковых тензорезисторов создало возможность изготавливать тензоре­зисторы непосредственно на кристаллическом элементе, выполнен­ном из кремния или сапфира. Упругие элементы кристаллических материалов обладают упругими свойствами, приближающимися к идеальным. Сцепление тензорезистора с мембраной за счет молекулярных сил позволяют отказаться от использования клеющих материалов и улучшить метрологические характеристики преобразователей. На рис.3.2, а показана сапфировая мембрана 3 с расположенными на ней однополосковыми тензорезисторами p -ти­па с положительной 1 и отрицательной 2 чувствительностями. По­ложительной чувствительностью обладает тензорезистор, у которо­го отношение >0, если же <0 – чувствительность отри­цательна.

Структура однополоскового тензорезистора приведена на рис.3.2, б. Здесь: 1 – тензорезистор; 2 – защитное покрытие; 3 – металлизирован­ные токоведущие дорожки; 4 – упругий элемент преобразователя (сапфировая мембрана). Тензорезисторы можно рас­полагать на мембране так, что при деформации они будут иметь разные по знаку приращения сопротивления. Это позволяет создавать мостовые схемы, в каждое из плеч которого вклю­чаются тензорезисторы с соответствую­щим значением и даже термоком­пенсационные элементы.

Тензорезисторы при­меняют для измерения деформаций и других неэлектрических величин – усилий, давлений, моментов и т.п.

Принцип действия терморезистора основан на зависимости электрического сопротивления проводников или полупроводников от температуры.По режиму работы терморезисторы различают перегревные и без преднамеренного перегрева . Перегревные ис­пользуют для измерения скорости, плотности, состава среды и др. В перегревных преобразователях электрический ток вызывает перегрев, зависящий от свойств среды. Последние применяются для измерения температуры окружающей среды.

Распространение получили терморезисторы, выполненные из медной или платиновой проволоки. Стандартные платиновые терморезисторы применяют для из­мерения температуры в диапазоне от –260 до +1100 °С, мед­ные – в диапазоне от –200 до +200 °С (ГОСТ 6651–78). Низкотемпературные платиновые терморезисторы (ГОСТ 12877–76) применяют для измерения температуры в пределах от –261 до –183°С.

На рис.3.3, а показано устройство платинового терморези­стора. В каналах керамической трубки 2 расположены две (или четыре) секции спирали 3 из платиновой проволоки, соединенные между собой последовательно.



Рисунок 3.3 − Устройство и внешний вид арматуры платинового

термометра сопротивления

К концам спирали припаивают выводы 4, используемые для включения терморезистора в изме­рительную цепь. Крепление выводов и герметизацию керамиче­ской трубки производят глазурью 1 . Каналы трубки засыпают порошком безводного оксида алюминия, выполняющим роль изо­лятора и фиксатора спирали. Порошок безводного оксида алю­миния, имеющий высокую теплопроводность и малую тепло­емкость, обеспечивает хорошую передачу теплоты и малую инер­ционность терморезистора. Для защиты терморезистора от механических и химических воздействий внешней среды его по­мещают в защитную арматуру (рис.3.3, б) из нержавеющей стали.

Для медных терморезисторов зависимость сопротивления от темпера­туры выражается уравнением

R=R 0 (1+α t ) при –50 0 С ≤ t ≤ +180 0 С,

где R 0 – сопротивление при t =0 0 С; α = 4,26∙10 –3 К –1 .Для платиновых –

R=R 0 при 0 0 С ≤ t ≤ +650 0 С,

где А= 3,968∙10 –3 К –1 ; В= 5,847∙10 –7 К –2 ; С =–4,22∙10 –12 К –4 .

Помимо платины и меди, для изготовления терморези­сторов используют никель (в странах дальнего зарубежья).

Для измерения температуры применяют также полупровод­никовые терморезисторы (термисторы и позисторы ) различных типов, кото­рые характеризуются большой чувствительностью (температурный коэффициент сопротивления ТКС термисторов отрицательный и при 20°С в 10–15 раз превышает ТКС меди и платины, ТКС позисторов положительный и несколько хуже) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов – плохая воспроизводимость и нелинейность характеристики преобразования.

Термисторы используются в диапазоне температур от –60 до +120°C.

где R и R 0 – сопротивления терморезистора при температурах соответственно t и t 0 ;

t 0 – начальная температура рабочего диапазона;

В – коэффициент преобразования.

К термочувствительным преобразователям относят также термодиоды и термотранзисторы , у которых при изменении температуры изменяет­ся величина сопротивления р-n перехода. Эти приборы обычно приме­няются в диапазоне от –80° до +150° С. Чаще всего термодиоды и терморезисторы включают в мостовые цепи и измерительные схемы в виде делителей напряжения. К достоинствам таких преобразователей относят высокие чувствительность и надежность, малые габариты, невысокую стоимость и малую инерционность. Основные недостатки: уз­кий диапазон рабочей температуры и плохая воспроизводимость ста­тической характеристики преобразователя.

Принцип действия индуктивных преобразователей основан на зависи­мости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения, геометрических размеров и магнитного сос­тояния элементов их магнитной цепи (рис.3.4). На рис.3.4 схематически показаны различные типы индук­тивных преобразователей. Индуктивный преобразователь (рис.3.4, а) с переменной длиной воздушного зазора δ характе­ризуется нелинейной зависимостью L = f (δ). Такой преобразова­тель обычно применяют при перемещениях якоря на 0,01-5 мм.

Рисунок 3.4 − Различные конструкции индуктивных преобразователей

Значительно меньшей чувствительностью, но линейной зависимо­стью L = f (s) отличаются преобразователи с переменным сечениемвоздушного зазора (рис.3.4, б). Эти преобразователи используют при перемещениях до 10…15 мм.

Широко распространены индуктивные дифференциальные преобразователи (рис.3.4, в), в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов. Дифференциальные преобразователи в сочетании с соответствующей измерительной цепью (обычно мостовой) имеют более высокую чувствитель­ность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов и сниженное результирующее усилие на якорь со стороны электромагнита, чем недифференциальные преобразователи.

На рис.3.4,г показана схема включения дифференциаль­ного индуктивного преобразователя , у которого выходными вели­чинами являются взаимные индуктивности. Такие преобразова­тели называют взаимно-индуктивными или трансформаторными. При питании первичной обмотки переменным током и при симмет­ричном положении якоря относительно электромагнитов ЭДС на выходных зажимах равна нулю. При перемещении якоря на выходных зажимах появляется ЭДС.

Для преобразования сравни­тельно больших перемещений (до 50…100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рис.3.4, д).

В горной промышленности получили распространение магнитоупругие преобразователи (рис.3.4, е ), действие которых основано на использовании эф­фекта зависимости магнитной проницаемости (магнитного сопротивле­ния цепи) от величины механического воздействия (сжатия или рас­тяжения) на ферромагнитный сердечник преобразователя. Различают магнитоупругие датчики дроссельного и трансформаторного типов. Последние могут контролировать только усилие сжатия, однако обладают большей чувствительностью.

Достоинствами индуктивных и магнитоупругих преобразователей яв­ляются простота и надежность в работе, значительная мощность вы­ходных сигналов. Основными недостатками – обратное воздействие преобразователя на исследуемый объект (воздействие электромагни­та на якорь) и влияние инерции якоря на частотные характеристики прибора.

Принцип действия емкостных преобразователей ос­нован на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от значения диэлектри­ческой проницаемости среды между ними. Они представляют собой конденсаторы различных конструкций, преобразующие механические линейные или угловые пе­ремещения, а также давление, влажность или уровень среды в изме­нение электрической емкости.

в )

Рисунок 3.5 − Различные конструкции емкостных преобразователей

Применяют также дифференциальные преобразователи (рис.3.5, б), у которых имеется одна подвижная и две непод­вижные пластины. При воздействии измеряемой величины х у этих преобразователей одновременно изменяются емкости С 1 и С 2 . Такие преобразователи используют для измерения сравнительно больших линейных (более 1 мм) и угловых перемещений. В этих преобразователях легко получить требуемую характеристику преобразо­вания путем профилирования пластин.

Преобразователи с использованием зависимости C = f 1 () применяют для измерения уровня жидкостей, влажности ве­ществ, толщины изделий из диэлектриков и т. п. Для примера (рис.3.5, в) приведем устройство емкостного уровнемера . Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости, так как изменение уровня ведет к изменению средней диэлектрической проницаемости среды между электродами. Изменением конфигурации пластин можно получить желаемый характер зависимости показаний прибора от объема (массы) жидкости.

Для измерения выходного параметра емкостных преобразо­вателей применяют мостовые цепи и цепи с использованием резо­нансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на переме­щения порядка 10 –7 мм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков мега­герц), что вызвано желанием увеличить сигнал, попадающий в измерительный прибор, и необходимостью уменьшить шунтиру­ющее действие сопротивления изоляции.

Полупроводниковые фоточувствительные преобразователи в качестве чувствительного элемента имеют светочувствительный слой, на­несенный на подложку (стеклянную пластинку). Сопротивление этого слоя обратно пропорционально интенсивности светового потока или мощности источника освещения. Фоторезисторы , фотодиоды и фототранзисторы обладают сравнительно высокой стабильностью, хорошей чувствительностью, но их применение ограничивается при наличии пыли, например угольной, препятствующей нормальной работе.

Действие ионизационных преобразователей основано на явлении ио­низации газа или люминесценции некоторых веществ под действием ионизирующего излучения. В качестве ионизирующих агентов применяют a –, b– и g– лучи радиоактивных веществ, иногда рентгеновские лучи и нейтронное излучение . Выбор типа ионизационного преобразователя зависит во многом от ионизирующего излучения. Гамма–лучи (электромагнитные колебания малой длины волны – 10 –8 …10 –11 см)об­ладают большой проникающей способностью.

Конструкции ионизационных камер и счетчиков разнообразны и зависят от вида излучения. В качестве источников ионизирующего излучения обычно используют кобальт-60, стронций-90, плутоний-239 и др.

Преимущества ионизационных преобразователей – в возможности бес­контактных измерений в агрессивных или взрывоопасных средах, сре­дах, имеющих высокою температуру или находящихся под большим дав­лением. Основной недостаток: необходимость применения биологической защиты при высокой активности источника излучения.

Генераторные преобразователи

В генераторных преобразователях выходной величиной является ЭДС или заряд, функционально связанный с измеряемой неэлектрической величиной.

Рассмотрим наиболее распространенные виды генераторных преобразователей.

Термоэлектрические преобразователи работают на термоэлектричес­ком эффекте, возникающем в цепи термопары : при разности температур в точках 1 и 2 (рис.3.6) соединения двух разнородных проводников в цепи термопары возникает термоЭДС .

Точку соединения проводников (электродов) 1 называют рабочим концом термопары, точки 2 и 2" – свободны­ми концами. Чтобы термоЭДС в цепи термопары однозначно определя­лась температурой рабочего конца, необходимо температуру свободных концов термопары поддерживать одинаковой и не­изменной. Градуировку термоэлектрических термометров произво­дят обычно при температуре сво­бодных концов 0°С. Градуировочные таблицы для стандартных термопар также составлены при условии равенства температуры свободных концов 0°С. При практическом применении термоэлектри­ческих термометров температура свободных концов термопары обычно не равна 0°С и поэтому необходимо вводить поправку.

Тахогенераторы предназначены для измерения угловой скорости вращающихся объектов. Ротор тахогенераторов механически связывают с валом испытуемого элек­тродвигателя или исполнительного механизма, а об угловой скорости w судят по выходной ЭДС генератора.

Из тахогенераторов наибольшее распространение получили тахогенераторы постоянного тока , выпускаемые с постоянными магнитами либо с независимым возбуждением. Область их применения весьма разнообразна: прецизионные тахогенераторы постоянного тока используются в авиации, судостроении, станкостроении, металлургической и других отраслях промышленности. К преимуществам этих датчиков относят достаточно высокую точность и наличие выходного сигнала постоянного тока, удобного для последующей обработки. Основным недостатком этих тахогенераторов является наличие коллекторно-щеточного узла, снижающего надежность работы и долговечность преобразователя.

Синхронные тахогенераторы имеют малое внутреннее сопротивление, что позволяет получить от них достаточно большие мощности. При изменении частоты вращения ротора в синхронных машинах изменяется не только амплитуда выходного напряжения, но и его частота. Благодаря механической устойчивости синхронные тахогенераторы нашли применение в трамваях, локомотивах, крановом хозяйстве и др.

Асинхронные тахогенераторы по конструкции подобны двухфазным асинхронным двигателям. Их роторы обычно выполняют в виде тонкостенного металлического цилиндра. Две обмотки статора тахогенератора сдвинуты на 90° относительно друг друга. К од­ной обмотке подводят напряжение питания, а с измерительной обмот­ки снимают ЭДС. При подаче напряжения питания постоян­ной величины и частоты пульсирующий магнитный поток, пересекая ротор, индуктирует в измерительной обмотке ЭДС, пропорциональную угловой скорости w ротора, приводимого в движение контролируемой машиной или механизмом. Основное достоинство асинхронных тахогенераторов состоит в том, что независимо от частоты вращения ротора ЭДС переменного тока на выходе такого тахогенератора имеет постоянную частоту.

К основным недостаткам тахогенераторов относят ог­раниченный частотный диапазон измеряемых величин. В последние годы тахогенераторы постепенно вытесняются фотоимпульсными и индукционными датчиками, а также специальными интеллектуальными преобразователями – шифраторами углового перемещения (положения) .

В фотоимпульсных датчиках импульсы в оптоэлектронной паре источник излучения – приемник излучения (светодиод – фотопреобразователь) создаются при помощи дисков с прорезями или отверстиями, в некоторых приводах применяют вращающиеся детали машин. В подавляющем большинстве шифраторов положения также используют в качестве чувствительного элемента оптоэлектронную пару.

Импульсы индукционных датчиков создаются под влиянием пульсирующего или знакопеременного магнитного потока. В качестве тела, модулирующего поток, служат специальные зубчатые колеса либо вращающиеся ферромагнитные детали машин.

В пьезоэлектрических преобразователях используется эффект появ­ления электрических зарядов на поверхности некоторых кристаллов (кварц, турмалин, сегнетова соль и др.) под влиянием механичес­ких напряжений.

Рисунок 3.7

Устройство пьезоэлектрического преобразователя для изме­рения переменного давления газа показано на рис.3.7. Давле­ние Р через металлическую мембрану 1 передается на зажатые между металлическими прокладками 2 кварцевые пластинки 3 . Шарик 4 способствует равномерному распределению давления по поверхности кварцевых пластинок. Средняя прокладка соединена с выводом 5 , проходящим через втулку из хорошего изоля­ционного материала. При воздействии давления Р между выводом 5 и корпусом преобразователя возникает разность потенциалов

Практическая работа №4

Работа измерительных преобразователей протекает в сложных условиях, так как объект измерения - это, как правило, сложный, многогранный процесс, характеризующийся множеством параметров, каждый из которых действует на измерительный преобразователь совместно с остальными параметрами. Нас же интересует только один параметр, который называется измеряемой величиной, а все остальные параметры процесса считаются помехами. Поэтому у каждого измерительного преобразователя устанавливается его естественная входная величина, которая лучше всего воспринимается им на фоне помех. Подобным образом можно выделить естественную выходную величину измерительного преобразователя.

Преобразователи неэлектрических величин в электрические с точки зрения вида сигнала на его выходе могут быть подразделены на генераторные, выдающие заряд, напряжение или ток (выходная величина Е = F (X) или I = F(X) и внутреннее сопротивление ZBH = const), и параметрические с выходным сопротивлением, индуктивностью или емкостью, изменяющимися в соответствии с изменением входной величины (ЭДС Е = 0 и выходная величина в виде изменения R, L или С в функции X).

Различие между генераторными и параметрическими преобразователями обусловлено их эквивалентными электрическими схемами, отражающими фундаментальные отличия в природе используемых в преобразователях физических явлений. Генераторный преобразователь является источником непосредственно выдаваемого электрического сигнала, а измерение изменений параметров параметрического преобразователя производится косвенно, по изменению тока или напряжения в результате его обязательного включения в схему с внешним источником питания. Электрическая схема, непосредственно связанная с параметрическим преобразователем, формирует его сигнал. Таким образом, совокупность параметрического преобразователя и электрической схемы является источником электрического сигнала.


По физическому явлению, положенному в основу работы, и типу входной физической величины генераторные и параметрические преобразователи делятся на ряд разновидностей (рисунок 2.3):

Генераторные - на пьезоэлектрические,

Термоэлектрические и т. п.;

Резистивные - на контактные,

Реостатные и т. д.;

Электромагнитные - на индуктивные,

Трансформаторные и т. д.

По виду модуляции все ИП делятся на две большие группы: амплитудные и частотные, временные, фазовые. Последние три разновидности имеют очень много общего и поэтому объединены в одну группу.

Рис. 2.3. Классификация измерительных преобразователей неэлектрических величин в электрические.

2. По характеру преобразования входные величины:

Линейные;

Нелинейные.

3. По принципу действия первичного измерительного преобразователя (ПИП) делятся на:

Генераторные;

Параметрические.

Выходным сигналом генераторных ПИП является ЭДС, напряжение, ток и электрический заряд, функционально связанные с измеряемой величиной, например ЭДС термопары.

В параметрических ПИП измеряемая величина вызывает пропорциональное ей изменение параметров электрической цепи: R, L, C.

К генераторным относятся:

Индукционные;

Пьезоэлектрические;

Некоторые разновидности электрохимических.

Резистивные ИП - преобразуют измеряемую величину в сопротивление.

Электромагнитные ИП преобразуют в изменение индуктивности или взаимоиндукцию.

Емкостные ИП – преобразуют в изменение ёмкости.

Пьезоэлектрические ИП – преобразуют динамическое усилие в электрический заряд.

Гальваномагнитные ИП – основаны на эффекте Холла преобразуют действующее магнитное поле в ЭДС.

Тепловые ИП - измеряемую температуру преобразуют в величину термосопротивления или ЭДС.

Оптоэлектронные ИП – преобразуют оптические сигналы в электрические.

Для датчиков основными характеристиками являются:

Диапазон рабочих температур и погрешность в этом диапазоне;

Обобщенные входные и выходные сопротивления;

Частотная характеристика.

В промышленном применении погрешность датчиков, используемых в процессах регулирования, должна быть не более 1–2%. А для задач контроля – 2 – 3%.

2.1.3. Схемы включения первичных измерительных преобразователей

Первичные измерительные преобразователи бывают:

Параметрические;

Генераторные.

Схемы включения параметрических первичных измерительных преобразователей подразделяют на:

Последовательное включение:

Дифференциальное включение:

С одним первичным измерительным преобразователем;

С двумя первичными измерительными преобразователем;

Мостовые схемы включения:

Симметричный неуравновешенный мост с одним активным плечом;

Симметричный неуравновешенный мост с двумя активными плечами;

Симметричный неуравновешенный мост с четырьмя активными плечами.

Схемы включения генераторных измерительных преобразователей подразделяются на:


Последовательные;

Дифференциальные;

Компенсационные.

Генераторные не нуждаются в источнике энергии, а параметрические нуждаются. Очень часто генераторные можно представить как источник ЭДС, а параметрические можно представить как активный или реактивный резистор, сопротивление которого меняется с изменением измеряемой величины.

Последовательное и дифференциальное включение может применяться как к параметрическим, так и к генераторным ИП. Компенсационная схема – к генераторным. Мостовая – к параметрическим.

2.1.3.1. Схемы последовательного включения параметрических измерительных преобразователей

Последовательное включение одного параметрического измерительного преобразователя (рис.2.4):

Рис. 2.4. Последовательное включение одного параметрического ИП.

https://pandia.ru/text/80/219/images/image012_106.gif" width="137" height="45 src=">;

https://pandia.ru/text/80/219/images/image014_89.gif" width="247" height="65 src=">;

https://pandia.ru/text/80/219/images/image016_83.gif" width="116 height=41" height="41"> - чувствительность по току;

- чувствительность по напряжению;

Чувствительность по мощности;

Рис. 2.5. Выходные характеристики последовательно включенного ИП:

а – реальная; б – идеальная.

Последовательное включение двух параметрических измерительных преобразователей (рис.2.6).

Рис.2.6. Последовательное включение двух параметрических ИП.

https://pandia.ru/text/80/219/images/image022_71.gif" width="88" height="24 src=">;

Электроизмерительные приборы получили широкое применение для измерений неэлектрических величин. Это стало возможным благодаря применению специальных преобразователей (Пр).

Выходные сигналы таких преобразователей передаются в виде параметров цепи или ЭДС (заряда), связанной функциональной зависимостью с входным сигналом. Первые называются параметрическими, вторые – генераторными .

Из параметрических преобразователей наибольшее распространение получили реостатные, тензочувствительные, термочувствительные, электролитические, ионизационные, индуктивные и емкостные устройства.


Реостатные преобразователи представляют собой изолированный остов, на который намотан проводник и перемещающаяся вдоль витков щетка. Их выходным параметром служит сопротивление цепи.

Измеряемой величиной Пр может быть перемещение щетки по прямой или по окружности. Усовершенствовав воспринимающую систему, Пр можно применять для определения давления или массы, под действием которых будет перемещаться ползунок.

Для обмотки реостата применяют материалы, сопротивление которых мало зависит от внешних факторов (температура, давление, влажность и т. д.). Такими материалами могут быть нихром, фехраль, константан или манганин. Изменяя форму и сечение остова (соответственно меняется и длина одного витка) можно добиться нелинейной зависимости сопротивления цепи от перемещения ползунка.

Достоинством реостатных преобразователей можно назвать простоту их конструкции. Однако невозможно точно определить перемещение, если выходное сопротивление при этом изменяется в пределах одного витка. Это является главным недостатком таких Пр, и характеризует их погрешность.


Тензочувствительные преобразователи (ТЧПр) . Работа их основана на изменении активного сопротивления проводника под воздействием давления или механической деформации. Такое явление называется тензоэффектом.

Входным сигналом для ТЧПр может быть растяжение, сжатие или другой вид деформации деталей оборудования, металлических конструкций, выходным сигнал служит изменение сопротивления преобразователя.

Тензочувствительные Пр представляют собой тонкую подложку, выполненную из бумаги или пленки и наклеенную на нее проволоку, очень малого сечения. В качестве воспринимающего элемента обычно используют константановую проволоку, имеющую независимое от температуры сопротивление, диаметром 0,02-0,05 мм. Также применяют фольговые ТЧПр и пленочные тензорезисторы.

ТЧ преобразователь наклеивают на измеряемую деталь, таким образом, чтобы ось линейного расширения детали совпадала с продольной осью ТЧП. При расширении измеряемого объекта, увеличивается длина ТЧП, соответственно его сопротивление изменяется.

Достоинством таких приборов является линейность, простота конструкции и установки. К недостаткам можно отнести невысокую чувствительность.

Термочувствительные преобразователи (ТРПр) . В качестве основных элементов таких устройств применяют терморезисторы, термодиоды, термотранзисторы и т. п. Термоэлемент включается в электрическую цепь, таким образом, что через него проходит ток цепи, и воздействует температура измеряемого элемента.

С их помощью могут быть измерены температура, вязкость, теплопроводность, скорость движения и прочие параметры среды, в которой находится элемент.

Для измерений в диапазоне температур -260°C до +1100°C применяют платиновые терморезисторы, в диапазоне -200°C до +200°C – медные. В диапазоне температур -80°C до +150°C, когда требуется особая точность, применяют термодиоды и термотранзисторы.

ТРПр по режиму работы разделяют на перегревные и без предварительного нагрева. Приборы без предварительного нагрева применяют только для измерения температуры среды, так как протекающий в них ток не влияет на их нагрев. По сопротивлению элемента достаточно точно определяют температуру среды.

Режим работы другого вида термопреобразователей связан с их предварительным разогревом до заданной величины. Затем их помещают в измеряемую среду, и следят за изменением его сопротивления.

По скорости изменения сопротивления можно судить насколько интенсивно происходит охлаждение или нагрев, а значит можно определить скорость движения измеряемого вещества, его вязкость и другие параметры.

Полупроводниковые ТРПр более чувствительны чем терморезисторы, поэтому их применяют в области точных измерений. Однако их существенным недостатком является узкий температурный диапазон и плохая воспроизводимость статической характеристики устройства.


Электролитические преобразователи (ЭЛП) . Применяют для определения концентрации растворов, так как электрическая проводимость растворов существенно зависит от степени концентрации солей в них.

ЭЛП представляют собой сосуд с двумя электродами. К электродам подается напряжение, таким образом, электрическая цепь замыкается через слой электролита. Такие преобразователи применяют на переменном токе, так как под действием постоянного тока, электролит диссоциирует на положительные и отрицательные ионы, что вносит погрешность в измерения.

Еще одним недостатком ЭЛП модно назвать зависимость проводимости электролита от температуры, что вынуждает поддерживать постоянную температуру с помощью холодильных или нагревательных установок.

Индуктивные и емкостные преобразователи . Как следует из названия, выходными параметрами таких устройствй являются индуктивность и емкость. Измеряемой величиной простых индуктивных Пр может быть перемещение от 10 до 15 мм, для индуктивных трансформаторных Пр с незамкнутой системой это значение может быть увеличено до 100 мм. Емкостные Пр применяют для измерения перемещений порядка 1 мм.

Индуктивные Пр представляют собой две катушки индуктивности, размещенные на незамкнутом сердечнике. На взаимную индуктивность катушек влияют такие параметры как: длина воздушного зазора незамкнутого участка, площадь поперечного сечения воздушного зазора, магнитная проницаемость воздушного зазора.

Таким образом, измерением взаимной индуктивности катушек можно определить насколько изменились вышеприведенные параметры. А измениться они могут при перемещении в воздушном промежутке пластины диэлектрика. На этом основан принцип работы индуктивных Пр.

Принцип работы емкостных Пр основан на изменении емкости конденсатора при уменьшении активной площади обкладок, изменении расстояния между обкладками конденсатора и изменении диэлектрической проницаемости межобкладочного пространства.

Емкостные преобразователи имеют более высокую чувствительность к изменению входных параметров. Емкостный Пр в состоянии зафиксировать изменение емкости даже при перемещении на тысячные доли миллиметра.

Ионизационные преобразователи . Принцип работы приборовя основан на явлении ионизации газа и других сред под воздействием ионизирующих излучений, в качестве которых могут применяться ионизирующие α-, β- и γ-излучения радиоактивных веществ, или рентгеновские излучения.

Если камеру с газом подвергнуть излучению, то через электроды потечет электрический ток. Величина этого тока будет зависеть от состава газа, размеров электродов, расстояния между электродами и приложенного напряжения.

Измеряя электрический ток в цепи, при известном составе среды, расстоянии между электродами, приложенном напряжении модно определить размер электродов, или наоборот другие параметры. Их применяют для измерения размеров деталей, или составов газа и пр.

Основным преимуществом ионизирующих Пр является возможность бесконтактного измерения, в агрессивных средах, под повышенным давлением или температурой. Недостатком таких Пр является необходимость биологической защиты персонала от воздействия излучений.


Тема 18

Измерительные преобразователи (датчики)

Ни одна система управления не может работать без информации о состоянии объекта управления и его реакции на управляющее воздействие. Элементом систем, обеспечивающим получение такой информации, является измерительный преобразователь-датчик .

Число типов датчиков значительно превосходит число измеряемых величин, так как одну и ту же физическую величину можно измерять различными методами и датчиками разных конструкций.

Для большинства датчиков характерно измерение электрическими методами не только электрических и магнитных, но и других физических величин. Такой подход обусловлен достоинствами электрических измерений, в виду того, что электрические сигналы можно просто и быстро передавать на большие расстояния, электрические величины легко, быстро и точно преобразуются в цифровой код, позволяют обеспечить высокую точность и чувствительность.

В качестве классификационных признаков датчиков можно принять многие характеристики: вид функции преобразования; род входной и выходной величины; принцип действия; конструктивное исполнение.

По виду используемой энергии датчики можно подразделить на электрические, механические, пневматические и гидравлические. В зависимости от вида выходного сигнала: аналоговые, дискретные, релейные, с естественным или унифицированным выходным сигналом.

По характеру преобразования входной величины в выходную: параметрические, генераторные, частотные, фазовые.

По виду измеряемой физической величины: линейных и угловых перемещениях, давления, температуры, концентрации веществ и т.д.

Принцип действия параметрических преобразователей заключается в преобразовании неэлектрических входных величин в параметры электрических цепей: сопротивление R , индуктивность L , емкость С , взаимоиндуктивность М . Для питания этих преобразователей требуются внешние источники. К таким датчикам относятся: резистивные, индуктивные, трансформаторные, емкостные преобразователи.

Генераторные преобразователи преобразуют входные величины в ЭДС. Они не требуют энергии дополнительных источников питания.

Это индукционные, термоэлектрические, пьезоэлектрические, фотоэлектрические преобразователи.

Фазовые и частотные преобразователи могут быть как параметрическими, так и генераторными.


Реостатные – выполнены в виде реостата, подвижной контакт которого перемещается под воздействием входной измеряемой величины. Чаще всего реостатный датчик включается в измерительную систему по схеме потенциометра, их иногда называют потенциометрическими датчиками.

Выходной величиной датчика является электрическое сопротивление функционально связанное с положением подвижного контакта. Такие датчики служат для преобразования угловых или нелинейных перемещений в соответствующее изменение сопротивления, тока, напряжения.



Они также могут быть использованы для измерения давления, расхода, уровня. Их часто используют также в качестве промежуточных преобразователей неэлектрических величин в электрические.

В устройствах автоматики широко применяются проволочные реостатные преобразователи, которые отличаются высокой точностью и стабильностью функции преобразования, имеют малый температурный коэффициент сопротивления (ТКС).

К недостаткам относятся низкая разрешающая способность, сравнительно невысокое сопротивление (до десятков кОм), ограниченная возможность применения на переменном токе, обусловленная остаточными индуктивностью и емкостью намотки.

Обмотку выполняют изолированным проводом виток к витку или с заданным шагом. В качестве провода применяют константан, манганин.

Датчик данного типа не реагируют на знак входного сигнала, работают как на постоянном, так и на переменном токе.

Тензорезисторы . В основе их работы лежит тензоэффект, заключающийся в изменении активного сопротивления проводниковых и полупроводниковых материалов при их механической деформации.

Характеристикой тензоэффекта материала служит коэффициент тензочувствительности К т, определяемый как отношение изменения сопротивления к изменению длины проводника

Константан – К т = 2

Нихром – К т = 2,2

Хром – К т = 2,5

Тензорезисторы используют для измерения давления жидкости и газов, при измерении упругих деформаций материалов: давлений изгибов, скручивания.

В качестве тензорезистивного материала можно использовать металлы с малым ТКС: манганин, константан, нихром, ртуть, высокотемпературные сплавы, полупроводниковые материалы: германий, кремний. Наибольшее распространение получили тензорезисторы из металла. Они разделяются на проволочные и фольговые, последние более совершенны.

Угольные преобразователи. Их принцип действия основан на изменении контактного сопротивления между частицами угля при изменении давления. Их применяют для измерения усилий, давлений, малых перемещений. Различают угольные столбики и тензолиты.

Первые представляют собой набор из 10-15 отшлифованных шайб, изготовленных из электродных углей.

Характеристика угольного преобразователя нелинейна, он имеет переменную чувствительность. Нестабильны в работе, характеристики зависят от температуры и влажности окружающей среды, качества подготовки поверхностей.

Вторые имеют малые размеры и массу. Их применяют для измерения быстроменяющихся и ударных напряжений в движущихся деталях небольшого размера, при этом они работают как на растяжение, так и на сжатие. Коэффициент чувствительности тензолитовых преобразователей больше, чем у тензорезисторов, и составляет К = 15 ¸ 20.

Она выполняется в виде полосок, состоящих из смеси графита, сажи, бакелитового лака и других компонентов. Эти полоски наклеиваются на испытуемую деталь.

Резистивные преобразователи несмотря на присущие им недостатки до настоящего времени находят широкое применение.

Емкостные преобразователи . Принцип действия основан на изменении емкости конденсатора под воздейтсивем входной преобразуемой величины

где e – относительная диэлектрическая проницаемость диэлектрика; e 0 – диэлектрическая проницаемость вакуума; S – площадь пластины; d – толщина диэлектрика или расстояния между пластинами.

Емкостные датчики используют для измерения угловых и линейных перемещений, линейных размеров, уровня, усилий, влажности концентрации и др.

В емкостных плоскопараллельных датчиках изменяется плоскость перекрытия S (перемененная площадь перекрытия) статическая характеристика линейна.

В емкостных преобразователях с переменным воздушным зазором характеристика нелинейна.

Преобразователи и изменением диэлектрической проводимости среды между электродами широко используются для измерения уровня жидких и сыпучих веществ, анализа состава и концентрации веществ в химической, нефтеперерабатывающей промышленности, для счета изделий, охранной сигнализации. Они имеют линейную статическую характеристику.

Емкость измерительных преобразователей в зависимости от конструктивных особенностей колеблется от десятых долей до нескольких тысяч пикофарад, что приводит к необходимости использовать для питания датчиков напряжения повышений частоты Гц.

Это существенный недостаток подобных преобразователей.

Диэлектрические свойства среды иногда изменяются под воздействием температуры или механических усилий. Эти эффекты также используются для создания соответствующих измерительных преобразователей.

Изменение проницаемости под действием температуры описывается выражением

,

где e т – диэлектрическая проницаемость материала при температуре Т ; e 0 – диэлектрическая проницаемость при температуре Т 0 ; a - температурный коэффициент; .

Аналогичный вид имеет и зависимость e от приложенного к нему усилия Р

,

где – чувствительность материала к относительному изменению диэлектрической проницаемости

.

Начальная емкость преобразователей тем больше, чем меньше зазор d между электродами. Однако уменьшение зазора ограничивается диэлектрической прочностью межэлектродной среды и наличием силы электростатического притяжения пластин.

Погрешности емкостных преобразователей в основном определяются влиянием температуры и влажности на геометрические размеры и диэлектрическую проницаемость среды. Они являются практически безинерционными элементами.

К достоинствам относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Реактивное сопротивление нагрузки выбирают равным по значению и обратным по знаку внутреннему сопротивлению датчика.

Термометры сопротивления. Термометры сопротивления как и термопары, предназначены для измерения температуры газообразных, твердых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от –200 °С до 0 °С имеет вид:

R t =R 0 ,

а в области температур от 0 °С до 630 °С

R t =R 0 ,

где R t , R 0 - сопротивление проводника при температуре t и 0 °С; А, В, С - коэффициенты; t - температура, °С.

В диапазоне температур от 0 °С до 180 °С зависимость сопротивления проводника от температуры описывается приближенной формулой

R t =R 0 ,

где α - температурный коэффициент сопротивления материала проводника (ТКС).

Для проводников из чистого металла α≈ 6-10 -3 ...4-10 -3 град -1 .

Измерение температуры термометром сопротивления сводится к измерению его сопротивления R t , с последующим переходом к температуре по формулам или градуировочным таблицам.

Различают проволочные и полупроводниковые термометры сопротивления. Проволочный термометр сопротивления представляет собой тонкую проволоку из чистого металла, закрепленную на каркасе из температуростойкого материала (чувствительный элемент), помещенную в защитную арматуру (рис. 5.4).

Рис. 5.4. Чувствительный элемент термометра сопротивления

Выводы от чувствительного элемента подведены к головке термометра. Выбор для изготовления термометров сопротивления проволок из чистых металлов, а не сплавов, обусловлен тем, что ТКС чистых металлов больше, чем ТКС сплавов и, следовательно, термометры на основе чистых металлов обладают большей чувствительностью.

Промышленностью выпускаются платиновые, никелевые и медные термометры сопротивления. Для обеспечения взаимозаменяемости и единой градуировки термометров стандартизованы величины их сопротивления R 0 и ТКС.

Полупроводниковые термометры сопротивления (термисторы) представляют собой бусинки, диски или стержни из полупроводникового материала с выводами для подключения в измерительную цепь.

Промышленность серийно выпускает множество типов термисторов в различном конструктивном оформлении.

Размеры термисторов, как правило, малы - около нескольких миллиметров, а отдельные типы десятых долей миллиметра. Для предохранения от механических повреждений и воздействия среды термисторы защищаются покрытиями из стекла или эмали, а также металлическими чехлами.

Термисторы обычно имеют сопротивление от единиц до сотен килоом; их ТКС в рабочем диапазоне температур на порядок больше, чем у проволочных термометров. В качестве материалов для рабочего тела термисторов используют смеси оксидов никеля, марганца, меди, кобальта, которые смешивают со связующим веществом, придают ему требуемую форму и спекают при высокой температуре. Применяют термисторы для измерения температур в диапазоне от -100 до 300°С. Инерционность термисторов сравнительно невелика. К числу их недостатков следует отнести нелинейность температурной зависимости сопротивления, отсутствие взаимозаменяемости из-за большого разброса номинального сопротивления и ТКС, а также необратимое изменение сопротивления во времени.

Для измерения в области температур, близких к абсолютному нулю, применяются германиевые полупроводниковые термометры.

Измерение электрического сопротивления термометров производится с помощью мостов постоянного и переменного тока или компенсаторов. Особенностью термометрических измерений является ограничение измерительного тока с тем, чтобы исключить разогрев рабочего тела термометра. Для проволочных термометров сопротивления рекомендуется выбрать такой измерительный ток, чтобы мощность, рассеиваемая термометром, не превышала 20 ... 50 мВт. Допустимая рассеиваемая мощность в термисторах значительно меньше и ее рекомендуется определять экспериментально для каждого термистора.

Тензочувствительные преобразователи (тензорезисторы). В конструкторской практике часто необходимы измерения механических напряжений и деформаций в элементах конструкций. Наиболее распространенными преобразователями этих величин в электрический сигнал являются тензорезисторы. В основе работы тензорезисторов лежит свойство металлов и полупроводников изменять свое электрическое сопротивление под действием приложенных к ним сил. Простейшим тензорезистором может быть отрезок проволоки, жестко сцепленный с поверхностью деформируемой детали. Растяжение или сжатие детали вызывает пропорциональное растяжение или сжатие проволоки, в результате чего изменяется ее электрическое сопротивление. В пределах упругих деформаций относительное изменение сопротивления проволоки связано с ее относительным удлинением соотношением

ΔR/R=K Τ Δl/l,

где l, R - начальные длина и сопротивление проволоки; Δl , ΔR - приращение длины и сопротивления; K Τ - коэффициент тензочувствительности.

Величина коэффициента тензочувствительности зависит от свойств материала, из которого изготовлен тензорезистор, а также от способа крепления тензорезистора к изделию. Для металлических проволок из различных металлов K Τ = 1... 3,5.

Различают проволочные и полупроводниковые тензорезисторы. Для изготовления проволочных тензорезисторов применяются материалы, имеющие достаточно высокий коэффициент тензочувствительности и малый температурный коэффициент сопротивления. Наиболее употребительным материалом для изготовления проволочных тензорезисторов является константановая проволока диаметром 20 ... 30 мкм.

Конструктивно, проволочные тензорезисторы представляют собой решетку, состоящую из нескольких петель проволоки, наклеенных на тонкую бумажную (или иную) подложку (рис. 5.5). В зависимости от материала подложки тензорезисторы могут работать при температурах от -40 до +400 °С.

Рис. 5.5. Тензометр

Существуют конструкции тензорезисторов, прикрепляемых к поверхности деталей с помощью цементов, способные работать при температурах до 800 °С.

Основными характеристиками тензорезисторов являются номинальное сопротивление R, база l и коэффициент тензочувствительности K Τ . Промышленностью выпускается широкий ассортимент тензорезисторов с величиной базы от 5 до 30мм, номинальными сопротивлениями от 50 до 2000 Ом, с коэффициентом тензочувствительности 2±0,2.

Дальнейшим развитием проволочных тензорезисторов являются фольговые и пленочные тензорезисторы, чувствительным элементом которых являются решетка из полосок фольги или тончайшая металлическая пленка, наносимые на подложки на лаковой основе.

Тензорезисторы выполняются, на основе полупроводниковых материалов. Наиболее сильно тензоэффект выражен у германия, кремния и др. Основным отличием полупроводниковых тензорезисторов от проволочных является большое (до 50 %) изменение сопротивления при деформации благодаря большой величине коэффициента тензочувствительности.

Индуктивные преобразователи. Индуктивные преобразователи применяются для измерения перемещений, размеров, отклонений формы и расположения поверхностей. Преобразователь состоит из неподвижной катушки индуктивности с магнитопроводом и якоря, также являющегося частью магнитопровода, перемещающегося относительно катушки индуктивности. Для получения возможно большей индуктивности магнитопровод катушки и якорь выполняются из ферромагнитных материалов. При перемещении якоря (связанного, например, со щупом измерительного устройства) изменяется индуктивность катушки и, следовательно, изменяется ток, протекающий в обмотке. На рис. 5.6 приведены схемы индуктивных преобразователей с переменным воздушным зазором d (рис. 5.6а ) применяемых для измерения перемещения в пределах 0,01…10 мм; с переменной площадью воздушного зазора S δ (рис. 5.6б ), применяемых в диапазоне 5 … 20 мм.

Рис. 5.6. Индуктивные преобразователи перемещений

5.2. Операционные усилители

Операционный усилитель (ОУ) - это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления. Для усилителя напряжения передаточная функция (коэффициент усиления) определяется выражением

Для упрощения конструкторских расчетов предполагается, что идеальный ОУ имеет следующие характеристики.

1. Коэффициент усиления при разомкнутой петле обратной связи равен бесконечности.

2. Входное сопротивление R d равно бесконечности.

3. Выходное сопротивление R 0 = 0.

4. Ширина полосы пропускания равна бесконечности.

5. V 0 = 0 при V 1 = V 2 (отсутствует напряжение смещения нуля).

Последняя характеристика очень важна. Так как V 1 -V 2 = V 0 / А, то если V 0 имеет конечное значение, а коэффициент А бесконечно велик (типичное значение 100000) будем иметь

V 1 - V 2 = 0 и V 1 = V 2.

Поскольку входное сопротивление для дифференциального сигнала(V 1 - V 2)

также очень велико, то можно пренебречь током через R d .Эти два допущения существенно упрощают разработку схем на ОУ.

Правило1. При работе ОУ в линейной области на двух его входах действуют одинаковые напряжения.

Правило2. Входные токи для обоих входов ОУ равны нулю.

Рассмотрим базовые схемные блоки на ОУ. В большинстве этих схем ОУ используется в конфигурации с замкнутой петлей обратной связи.

5.2.1. Усилитель с единичным коэффициентом усиления

(повторитель напряжения)

Если в неинвертирующеи усилителе положить R i равным бесконечности, а R f равным нулю, то мы придем к схеме, изображенной на рис. 5.7.



Согласно правилу 1, на инвертирующем входе ОУ тоже действует входное напряжение V i , которое непосредственно передается на выход схемы. Следовательно, V 0 = V i , и выходное напряжение отслеживает (повторяет) входное напряжение. У многих аналого-цифровых преобразователей входное сопротивление зависит от значения аналогичного входного сигнала. С помощью повторителя напряжения обеспечивается постоянство входного сопротивления.

5.2.2. Сумматоры

Инвертирующий усилитель может суммировать несколько входных напряжений. Каждый вход сумматора соединяется с инвертирующим входом ОУ через взвешивающий резистор. Инвертирующий вход называется суммирующим узлом, поскольку здесь суммируются все входные токи и ток обратной связи. Базовая принципиальная схема суммирующего усилителя представлена на рис. 5.8.



Как и в обычном инвертирующем усилителе, напряжение на инвертирующем входе должно быть равно нулю, следовательно, равен нулю и ток, втекающий в ОУ. Таким образом,

i f = i 1 + i 2 + . . . + i n

Так как на инвертирующем входе действует нулевое напряжение, то после соответствующих подстановок, получаем

V 0 = -R f ( +. . . + ).

Резистор R f определяет общее усиление схемы. Сопротивления R 1, R 2, . . . R n задают значения весовых коэффициентов и входных сопротивлений соответ-ствующих каналов.

5.2.3. Интеграторы

Интегратор – это электронная схема, которая вырабатывает выходнойсигнал, пропорциональный интегралу (по времени) от входного сигнала.



На рис. 5.9 показана принципиальная схема простого аналогового интегратора.Один вывод интегратора присоединен к суммирующему узлу, а другой – к выходу интегратора. Следовательно, напряжение на конденсоторе одновре-менно является выходным напряжением. Выходной сигнал интегратора не удается описать простой алгебраической зависимостью, поскольку при фикси-рованном входном напряжении выходное напряжение изменяется со скорос-тью, определяемом параметрами V i ,R и C. Таким образом, для того, чтобы найти выходное напряжение, нужно знать длительность действия входного сигнала. Напряжение на первоначально разряженном конденсаторе

где i f – через конденсатор и t i - время интегрирования. Для положительного

Vi имеем i i = V i /R. Поскольку i f = i i , то с учетом инверсии сигнала получаем

Из этого соотношения следует, что V 0 определяется интегралом (с обратным знаком) от входного напряжения в интервале от 0 до t 1 , умноженным на масштабный коэффициент 1/RC. Напряжение V ic - это напряжение на конденсаторе в начальный момент времени (t = 0).

5.2.4. Дифференциаторы

Дифференциатор вырабатывает выходной сигнал, пропорциональный скорости изменения во времени входного сигнала. На рис. 5.10 показана принципиальная схема простого дифференциатора.



Ток через конденсатор .

Если производная положительна, ток i i течет в таком направлении, что формируется отрицательное выходное напряжение V 0.

Таким образом,

Этот метод дифференцирования сигнала кажется простым, но при его практической реализации возникают проблемы с обеспечением устойчивости схемы на высоких частотах. Не всякий ОУ пригоден для использования в дифференциаторе. Критерием выбора является быстродействие ОУ: нужно выбирать ОУ с высокой максимальной скоростью нарастания выходного напряжения и высоким значением произведения коэффициента усиления на ширину полосы. Хорошо работают в дифференциаторах быстродействующие ОУ на полевых транзисторах.

5.2.5. Компараторы

Компаратор – это электронная схема, которая сравнивает два входных напряжения и вырабатывает выходной сигнал, зависящий от состояния входов. Базовая принципиальная схема компаратора показана на рис. 5.11.


Как видим, здесь ОУ работает с разомкнутой петлей обратной связи. На один из его входов подается опорное напряжение, на другой – неизвестное (сравниваемое) напряжение. Выходной сигнал компаратора указывает: выше или ниже уровня опорного напряжения находится уровень неизвестного входного сигнала. В схеме на рис.5.11 опорное напряжение V r подается на неинвертирующий вход, а на инвертирующий вход поступает неизвестный сигнал V i .

При V i > V r на выходе компаратора устанавливается напряжение V 0 = - V r (отрицательное напряжение насыщения). В противоположном случае получаем V 0 = +V r .Можно поменять местами входы – это приведет к инверсии выходного сигнала.

5.3. Коммутация измерительных сигналов

В информационно-измерительной технике при реализации аналоговых измерительных преобразований часто приходится осуществлять электрические соединения между двумя и более точками измерительной схемы с целью вызвать необходимый переходный процесс, рассеять запасенную реактивным элементом энергию (например, разрядить конденсатор), подключить источник питания измерительной цепи, включить ячейку аналоговой памяти, взять выборку непрерывного процесса при дискретизации и т. д. Кроме того, многие измерительные средства осуществляют измерительные преобразования последовательно над большим числом электрических величин, распределенных в пространстве. Для реализации сказанного используются измерительные коммутаторы и измерительные ключи.

Измерительным коммутатором называется устройство, которое преобразует пространственно разнесенные аналоговые сигналы в сигналы, разделенные во времени, и наоборот.

Измерительные коммутаторы аналоговых сигналов характеризуются следующими параметрами:

динамическим диапазоном коммутируемых величин;

погрешностью коэффициента передачи;

быстродействием (частотой переключении или временем, необходимым для выполнения одной коммутационной операции);

числом коммутируемых сигналов;

предельным числом переключений (для коммутаторов с контактными измерительными ключами).

В зависимости от типа используемых в коммутаторе измерительных ключей различаются контактные и бесконтактные коммутаторы .

Измерительный ключ представляет собой двухполюсник с явно выраженной нелинейностью вольт-амперной характеристики. Переход ключа из одного состояния (закрытого) в другое (открытое) выполняется с помощью управляющего элемента.

5.4. Аналого-цифровое преобразование

Аналого-цифровое преобразование составляет неотъемлемую часть измерительной процедуры. В показывающих приборах эта операция соответствует считыванию числового результата экспериментатором. В цифровых и процессорных измерительных средствах аналого-цифровое преобразование выполняется автоматически, а результат либо поступает непосредственно на индикацию, либо вводится в процессор для выполнения последующих измерительных преобразований в числовой форме.

Методы аналого-цифрового преобразования в измерениях разработаны глубоко и основательно и сводятся к представлению мгновенных значений входного воздействия в фиксированные моменты времени соответствующей кодовой комбинацией (числом). Физическую основу аналого-цифрового преобразования составляет стробирование и сравнение с фиксированными опорными уровнями. Наибольшее распространение получили АЦП поразрядного кодирования, последовательного счета, следящего уравновешивания и некоторые другие. К вопросам методологии аналого-цифрового преобразования, которые связаны с тенденциями развития АЦП и цифровых измерений на ближайшие годы относятся, в частности:

Устранение неоднозначности считывания в наиболее быстродействующих АЦП сопоставления, получающих все большее распространение с развитием интегральной технологии;

Достижение устойчивости к сбоям и улучшение метрологических характеристик АЦП на основе избыточной системы счисления Фибоначчи;

Применение для аналого-цифрового преобразования метода статистических испытаний.

5.4.1 Цифроаналоговые и аналого-цифровые преобразователи

Цифроаналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП) являются неотъемлемой частью автоматических систем контроля управления и регулирования. Кроме того, поскольку по­давляющее большинство измеряемых физических величин являются аналоговыми, а их обработка индикация и регистрация, как правило, осуществляются цифровыми методами, ЦАП и АЦП нашли широкое применение в автоматических средствах измерений. Так, ЦАП и АЦП входят в состав цифровых измерительных приборов (вольтметров, осциллографов, анализаторов спектра, корреляторов и т. п.), программируемых источников питания, дисплеев на электроннолучевых трубках, графопостроителей, радиолокационных систем установок для контроля элементов и микросхем, являются важными компонентами различных преобразователей и генераторов, устройств ввода вывода информации ЭВМ. Широкие перспективы применения ЦАП и АЦП открываются в телеметрии и телевидении. Серийный выпуск малогабаритных и относительно дешевых ЦАП и АЦП даст возможность еще более широкого использования методов дискретно непрерывного преобразования в науке и технике.

Существует три разновидности конструктивно технологического исполнения ЦАП и АЦП: модульное, гибридное и интегральное. При этом доля производства интегральных схем (ИС) ЦАП и АЦП в общем объеме их выпуска непрерывно возрастает, чему в значительной степени способствует широкое распространение микропроцессоров и методов цифровой обработки данных. ЦАП - устройство, которое создает на выходе аналоговый сигнал (напряжение или ток), пропорциональный входному цифровому сигналу. При этом значение выходного сигнала зависит от значения опорного напряжения U оп, определяющего полную шкалу выходного сигнала. Если в качестве опорного напряжения использовать какой либо аналоговый сигнал, то выходной сигнал ЦАП будет пропорционален произведению входных цифрового и анало­гового сигналов.В АЦП цифровой код на выходе определяется отношением пpeобразуемого входного аналогового сигналa к опорному сигналy, соответствующему полной шкале. Это соотношение выполняется и в том случае, если опорный сигнал изменяется по какому-либо за­кону. АЦП можно рассматривать как измеритель отношений или делитель напряжений с цифровым выходом.

5.4.2. Принципы действия, основные элементы и структурные схемы АЦП

В настоящее время разработано большое количество типов АЦП, удовлетворяющее разнообразным требованиям. В одних случаях преобладающим требованием является высокая точность, в других - скорость преобразования.

По принципу действия все существующие типы АЦП можно разделить на две группы: АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений и АЦП интегрирующего типа.

В АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений используется процесс преобразования, сущность которого заключается в формировании напряжения с уровнями, эквивалентными соответствующим цифровым кодам, и сравнении этих уровней напряжения с входным напряжением с целью определения цифрового эквивалента входного сигнала. При этом уровни напряжения могут формироваться одновременно, последовательно или комбинированным способом.

АЦП последовательного счета со ступенчатым пилообразным напряжением является одним из простейших преобразователей (рис. 5.12).



По сигналу "Пуск" счетчик устанавливается в нулевое состояние, после чего по мере поступления на его вход тактовых импульсов с частотой f т линейно-ступенчато возрастает выходное напряжение ЦАП.

При достижении напряжением U вых значения U вх схема сравнения прекращает подсчет импульсов в счетчике Сч, а код с выходов последнего заносится в регистр памяти. Разрядность и разрешающая способность таких АЦП определяется разрядностью и разрешающей способностью используемого в его составе ЦАП. Время преобразования зависит от уровня входного преобразуемого на-пряжения. Для входного напряжения, соответствующего значению полной шка-лы, Сч должен быть заполнен и при этом он должен сформировать на входе ЦАП код полной шкалы. Это требует для n- разрядного ЦАП времени преобразования в (2 n - 1) раз больше периода тактовых импульсов. Для быстрого аналого-цифрового преобразования использование подобных АЦП нецелесообразно.

В следящем АЦП (рис. 5.13) суммирующий Сч заменен на реверсивный счетчик РСч, чтобы отслеживать изменяющееся входное напряжение. Выходной сигнал КН определяет направление счета в зависимости от того превышает или нет входное напряжение АЦП выходное напряжение ЦАП.


Перед началом измерений РСч устанавливается в состояние, соответствующее середине шкалы (01 ... 1). Первый цикл преобразования следящего АЦП аналогичен циклу преобразования в АЦП последовательного счета. В дальнейшем циклы преобразования существенно сокращаются, так как данный АЦП успевает отследить малые отклонения входного сигнала за несколько тактовых периодов, увеличивая или уменьшая число импульсов, записанное в РСч, в зависимости от знака рассогласования текущего значения преобразуемого напряжения U вх и выходного напряжения ЦАП.

АЦП последовательного приближения (поразрядного уравновешивания) нашли наиболее широкое распространение в силу достаточно простой их реализации при одновременном обеспечении высокой разрешающей способ-ности, точности и быстродействия, имеют несколько меньшее быстродействие, но существенно большую разрешающую способность в сравнении с АЦП, реализующими метод параллельного преобразования.



Для повышения быстродействия в качестве управляющего устройства используется распределитель импульсов РИ и регистр последовательного приближения. Сравнение входного напряжения с опорным (напряжением обратной связи ЦАП) ведется, начиная с величины, соответствующей старшему разряду формируемого двоичного кода.

При пуске АЦП с помощью РИ устанавливается в исходное состояние РПП:

1000 . . .0. При этом на выходе ЦАП формируется напряжение, соответствующее половине диапазона преобразования, что обеспечивается включением его старшего разряда. Если входной сигнал меньше, чем сигнал от ЦАП, в следующем такте с помощью РПП на цифровых входах ЦАП формируется код 0100. . . 0, что соответствует включению 2-го по старшинству разряда. В результате выходной сигнал ЦАП уменьшается вдвое.

Если входной сигнал превышает сигнал от ЦАП, в очередном такте обеспечивается формирование кода 0110 ... 0 на цифровых входах ЦАП и включение дополнительного 3-го разряда. При этом выходное напряжение ЦАП, возросшее в полтора раза, вновь сравнивается с входным напряжением и т. д. Описанная процедура повторяется n раз (где n - число разрядов АЦП).

В результате на выходе ЦАП сформируется напряжение, отличающееся от входного не более, чем на единицу младшего разряда ЦАП. Результат преобразования снимается с выхода РПП.

Достоинством данной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразователей сравнительно высокого быстродействия (с временем преобразования порядка несколько сот наносекунд).

В АЦП непосредственного считывания(параллельного типа) (рис. 5.15) входной сигнал одновременно прикладывается ко входам всех КН, число m которых определяется разрядностью АЦП и равно m = 2 n - 1, где n - число разрядов АЦП. В каждом КН сигнал сравнивается с опорным напряжением, соответствующем весу определенного разряда и снимаемым с узлов резисторного делителя, питаемого от ИОН.



Выходные сигналы КН обрабатываются логическим дешифратором, вырабатывающим параллельный код, являющийся цифровым эквивалентом входного напряжения. Подобные АЦП обладают самым высоким быстродействием. Недостаток таких АЦП заключается в том, что с ростом разрядности количество требуемых элементов практически удваивается, что затрудняет построение многоразрядных АЦП подобного типа. Точность преобразования ограничивается точностью и стабильностью КН и резисторного делителя. Чтобы увеличить разрядность при высоком быстродействии реализуют двухкаскадные АЦП, при этом с выходов второй ступени ДШ снимаются младшие разряды выходного кода, а с выходов ДШ первой ступени - старшие разряды.

АЦП с модуляцией длительности импульса (однотактный интегрирующий)

АЦП характеризуется тем, что уровень входного аналогового сигнала U вх преобразуется в импульс, длительность которого t имп является функцией значения входного сигнала и преобразуется в цифровую форму с помощью подсчета числа периодов опорной частоты, которые укладываются между началом и концом импульса. Выходное напряжение интегратора под действием подклю-


ченного к его входу U оп изменяется от нулевого уровня со скоростью

В момент, когда выходное напряжение интегратора становится равным входному U вх, КН срабатывает, в результате чего заканчивается формирование длительности импульса, в течение которого в счетчиках АЦП происходит подсчет числа периодов опорной частоты. Длительность импульса определяется временем, за которое напряжение U вых изменяется от нулевого уровня до U вх:

Достоинство данного преобразователя заключается в его простоте, а недостатки - в относительно низком быстродействии и низкой точности.