Преобразование сетевых адресов nat. Что такое NAT на роутере? Основная функция, которая работает в любом роутере - NAT

2 32 или 4 294 967 296 IPv4 адресов это много? Кажется, что да. Однако с распространением персональных вычислений, мобильных устройств и быстрым ростом интернета вскоре стало очевидно, что 4,3 миллиарда адресов IPv4 будет недостаточно. Долгосрочным решением было IPv6 , но требовались более быстрое решение для устранения нехватки адресов. И этим решением стал NAT (Network Address Translation) .

Что такое NAT

Сети обычно проектируются с использованием частных IP адресов. Это адреса 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16 . Эти частные адреса используются внутри организации или площадки, чтобы позволить устройствам общаться локально, и они не маршрутизируются в интернете. Чтобы позволить устройству с приватным IPv4-адресом обращаться к устройствам и ресурсам за пределами локальной сети, приватный адрес сначала должен быть переведен на общедоступный публичный адрес.

И вот как раз NAT переводит приватные адреса, в общедоступные. Это позволяет устройству с частным адресом IPv4 обращаться к ресурсам за пределами его частной сети. NAT в сочетании с частными адресами IPv4 оказался полезным методом сохранения общедоступных IPv4-адресов. Один общедоступный IPv4-адрес может быть использован сотнями, даже тысячами устройств, каждый из которых имеет частный IPv4-адрес. NAT имеет дополнительное преимущество, заключающееся в добавлении степени конфиденциальности и безопасности в сеть, поскольку он скрывает внутренние IPv4-адреса из внешних сетей.

Маршрутизаторы с поддержкой NAT могут быть настроены с одним или несколькими действительными общедоступными IPv4-адресами. Эти общедоступные адреса называются пулом NAT. Когда устройство из внутренней сети отправляет трафик из сети наружу, то маршрутизатор с поддержкой NAT переводит внутренний IPv4-адрес устройства на общедоступный адрес из пула NAT. Для внешних устройств весь трафик, входящий и выходящий из сети, выглядит имеющим общедоступный IPv4 адрес.

Маршрутизатор NAT обычно работает на границе Stub -сети. Stub-сеть – это тупиковая сеть, которая имеет одно соединение с соседней сетью, один вход и выход из сети.

Когда устройство внутри Stub-сети хочет связываться с устройством за пределами своей сети, пакет пересылается пограничному маршрутизатору, и он выполняет NAT-процесс, переводя внутренний частный адрес устройства на публичный, внешний, маршрутизируемый адрес.

Терминология NAT

В терминологии NAT внутренняя сеть представляет собой набор сетей, подлежащих переводу. Внешняя сеть относится ко всем другим сетям.

При использовании NAT, адреса IPv4 имеют разные обозначения, основанные на том, находятся ли они в частной сети или в общедоступной сети (в интернете), и является ли трафик входящим или исходящим.

NAT включает в себя четыре типа адресов:

  • Внутренний локальный адрес (Inside local address) ;
  • Внутренний глобальный адрес (Inside global address) ;
  • Внешний местный адрес (Outside local address) ;
  • Внешний глобальный адрес (Outside global address) ;

При определении того, какой тип адреса используется, важно помнить, что терминология NAT всегда применяется с точки зрения устройства с транслированным адресом:

  • Внутренний адрес (Inside address) - адрес устройства, которое транслируется NAT;
  • Внешний адрес (Outside address) - адрес устройства назначения;
  • Локальный адрес (Local address) - это любой адрес, который отображается во внутренней части сети;
  • Глобальный адрес (Global address) - это любой адрес, который отображается во внешней части сети;

Рассмотрим это на примере схемы.


На рисунке ПК имеет внутренний локальный (Inside local ) адрес 192.168.1.5 и с его точки зрения веб-сервер имеет внешний (outside ) адрес 208.141.17.4. Когда с ПК отправляются пакеты на глобальный адрес веб-сервера, внутренний локальный (Inside local ) адрес ПК транслируется в 208.141.16.5 (inside global ). Адрес внешнего устройства обычно не переводится, поскольку он является общедоступным адресом IPv4.

Стоит заметить, что ПК имеет разные локальные и глобальные адреса, тогда как веб-сервер имеет одинаковый публичный IP адрес. С его точки зрения трафик, исходящий из ПК поступает с внутреннего глобального адреса 208.141.16.5. Маршрутизатор с NAT является точкой демаркации между внутренней и внешней сетями и между локальными и глобальными адресами.

Термины, inside и outside , объединены с терминами local и global , чтобы ссылаться на конкретные адреса. На рисунке маршрутизатор настроен на предоставление NAT и имеет пул общедоступных адресов для назначения внутренним хостам.

На рисунке показано как трафик отправляется с внутреннего ПК на внешний веб-сервер, через маршрутизатор с поддержкой NAT, и высылается и переводится в обратную сторону.


Внутренний локальный адрес (Inside local address ) - адрес источника, видимый из внутренней сети. На рисунке адрес 192.168.1.5 присвоен ПК – это и есть его внутренний локальный адрес.

Внутренний глобальный адрес (Inside global address ) - адрес источника, видимый из внешней сети. На рисунке, когда трафик с ПК отправляется на веб-сервер по адресу 208.141.17.4, маршрутизатор переводит внутренний локальный адрес (Inside local address ) на внутренний глобальный адрес (Inside global address ). В этом случае роутер изменяет адрес источника IPv4 с 192.168.1.5 на 208.141.16.5.

Внешний глобальный адрес (Outside global address ) - адрес адресата, видимый из внешней сети. Это глобально маршрутизируемый IPv4-адрес, назначенный хосту в Интернете. На схеме веб-сервер доступен по адресу 208.141.17.4. Чаще всего внешние локальные и внешние глобальные адреса одинаковы.

Внешний локальный адрес (Outside local address ) - адрес получателя, видимый из внутренней сети. В этом примере ПК отправляет трафик на веб-сервер по адресу 208.141.17.4

Рассмотрим весь путь прохождения пакета. ПК с адресом 192.168.1.5 пытается установить связь с веб-сервером 208.141.17.4. Когда пакет прибывает в маршрутизатор с поддержкой NAT, он считывает IPv4 адрес назначения пакета, чтобы определить, соответствует ли пакет критериям, указанным для перевода. В этом пример исходный адрес соответствует критериям и переводится с 192.168.1.5 (Inside local address ) на 208.141.16.5. (Inside global address ). Роутер добавляет это сопоставление локального в глобальный адрес в таблицу NAT и отправляет пакет с переведенным адресом источника в пункт назначения. Веб-сервер отвечает пакетом, адресованным внутреннему глобальному адресу ПК (208.141.16.5). Роутер получает пакет с адресом назначения 208.141.16.5 и проверяет таблицу NAT, в которой находит запись для этого сопоставления. Он использует эту информацию и переводит обратно внутренний глобальный адрес (208.141.16.5) на внутренний локальный адрес (192.168.1.5), и пакет перенаправляется в сторону ПК.

Типы NAT

Существует три типа трансляции NAT:

  • Статическая адресная трансляция (Static NAT) - сопоставление адресов один к одному между локальными и глобальными адресами;
  • Динамическая адресная трансляция (Dynamic NAT) - сопоставление адресов “многие ко многим” между локальными и глобальными адресами;
  • Port Address Translation (NAT) - многоадресное сопоставление адресов между локальными и глобальными адресами c использованием портов. Также этот метод известен как NAT Overload ;

Статический NAT использует сопоставление локальных и глобальных адресов один к одному. Эти сопоставления настраиваются администратором сети и остаются постоянными. Когда устройства отправляют трафик в Интернет, их внутренние локальные адреса переводятся в настроенные внутренние глобальные адреса. Для внешних сетей эти устройства имеют общедоступные IPv4-адреса. Статический NAT особенно полезен для веб-серверов или устройств, которые должны иметь согласованный адрес, доступный из Интернета, как например веб-сервер компании. Статический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя.

Статическая NAT таблица выглядит так:


Динамический NAT использует пул публичных адресов и назначает их по принципу «первым пришел, первым обслужен». Когда внутреннее устройство запрашивает доступ к внешней сети, динамический NAT назначает доступный общедоступный IPv4-адрес из пула. Подобно статическому NAT, динамический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя.

Динамическая NAT таблица выглядит так:


Port Address Translation (PAT)

PAT транслирует несколько частных адресов на один или несколько общедоступных адресов. Это то, что делают большинство домашних маршрутизаторов. Интернет-провайдер назначает один адрес маршрутизатору, но несколько членов семьи могут одновременно получать доступ к Интернету. Это наиболее распространенная форма NAT.

С помощью PAT несколько адресов могут быть сопоставлены с одним или несколькими адресами, поскольку каждый частный адрес также отслеживается номером порта. Когда устройство инициирует сеанс TCP/IP , оно генерирует значение порта источника TCP или UDP для уникальной идентификации сеанса. Когда NAT-маршрутизатор получает пакет от клиента, он использует номер своего исходного порта, чтобы однозначно идентифицировать конкретный перевод NAT. PAT гарантирует, что устройства используют разный номер порта TCP для каждого сеанса. Когда ответ возвращается с сервера, номер порта источника, который становится номером порта назначения в обратном пути, определяет, какое устройство маршрутизатор перенаправляет пакеты.

Картинка иллюстрирует процесс PAT. PAT добавляет уникальные номера портов источника во внутренний глобальный адрес, чтобы различать переводы.


Поскольку маршрутизатор обрабатывает каждый пакет, он использует номер порта (1331 и 1555, в этом примере), чтобы идентифицировать устройство, с которого выслан пакет.

Адрес источника (Source Address ) - это внутренний локальный адрес с добавленным номером порта, назначенным TCP/IP. Адрес назначения (Destination Address ) - это внешний локальный адрес с добавленным номером служебного порта. В этом примере порт службы 80: HTTP.

Для исходного адреса маршрутизатор переводит внутренний локальный адрес во внутренний глобальный адрес с добавленным номером порта. Адрес назначения не изменяется, но теперь он называется внешним глобальным IP-адресом. Когда веб-сервер отвечает, путь обратный.

В этом примере номера портов клиента 1331 и 1555 не изменялись на маршрутизаторе с NAT. Это не очень вероятный сценарий, потому что есть хорошая вероятность того, что эти номера портов уже были прикреплены к другим активным сеансам. PAT пытается сохранить исходный порт источника. Однако, если исходный порт источника уже используется, PAT назначает первый доступный номер порта, начиная с начала соответствующей группы портов 0-511, 512-1023 или 1024-65535 . Когда портов больше нет, и в пуле адресов имеется более одного внешнего адреса, PAT переходит на следующий адрес, чтобы попытаться выделить исходный порт источника. Этот процесс продолжается до тех пор, пока не будет доступных портов или внешних IP-адресов.

То есть если другой хост может выбрать тот же номер порта 1444. Это приемлемо для внутреннего адреса, потому что хосты имеют уникальные частные IP-адреса. Однако на маршрутизаторе NAT номера портов должны быть изменены - в противном случае пакеты из двух разных хостов выйдут из него с тем же адресом источника. Поэтому PAT назначает следующий доступный порт (1445) на второй адрес хоста.

Подведем итоги в сравнении NAT и PAT. Как видно из таблиц, NAT переводит IPv4-адреса на основе 1:1 между частными адресами IPv4 и общедоступными IPv4-адресами. Однако PAT изменяет как сам адрес, так и номер порта. NAT перенаправляет входящие пакеты на их внутренний адрес, ориентируясь на входящий IP адрес источника, заданный хостом в общедоступной сети, а с PAT обычно имеется только один или очень мало публично открытых IPv4-адресов, и входящие пакеты перенаправляются, ориентируясь на NAT таблицу маршрутизатора.

А что относительно пакетов IPv4, содержащих данные, отличные от TCP или UDP? Эти пакеты не содержат номер порта уровня 4. PAT переводит наиболее распространенные протоколы, переносимые IPv4, которые не используют TCP или UDP в качестве протокола транспортного уровня. Наиболее распространенными из них являются ICMPv4. Каждый из этих типов протоколов по-разному обрабатывается PAT. Например, сообщения запроса ICMPv4, эхо-запросы и ответы включают идентификатор запроса Query ID . ICMPv4 использует Query ID. для идентификации эхо-запроса с соответствующим ответом. Идентификатор запроса увеличивается с каждым отправленным эхо-запросом. PAT использует идентификатор запроса вместо номера порта уровня 4.

Преимущества и недостатки NAT

NAT предоставляет множество преимуществ, в том числе:

  • NAT сохраняет зарегистрированную схему адресации, разрешая приватизацию интрасетей. При PAT внутренние хосты могут совместно использовать один общедоступный IPv4-адрес для всех внешних коммуникаций. В этом типе конфигурации требуется очень мало внешних адресов для поддержки многих внутренних хостов;
  • NAT повышает гибкость соединений с общедоступной сетью. Многочисленные пулы, пулы резервного копирования и пулы балансировки нагрузки могут быть реализованы для обеспечения надежных общедоступных сетевых подключений;
  • NAT обеспечивает согласованность для внутренних схем адресации сети. В сети, не использующей частные IPv4-адреса и NAT, изменение общей схемы адресов IPv4 требует переадресации всех хостов в существующей сети. Стоимость переадресации хостов может быть значительной. NAT позволяет существующей частной адресной схеме IPv4 оставаться, позволяя легко изменять новую схему общедоступной адресации. Это означает, что организация может менять провайдеров и не нужно менять ни одного из своих внутренних клиентов;

  • NAT обеспечивает сетевую безопасность. Поскольку частные сети не рекламируют свои адреса или внутреннюю топологию, они остаются достаточно надежными при использовании в сочетании с NAT для получения контролируемого внешнего доступа. Однако нужно понимать, что NAT не заменяет фаерволы;

Но у NAT есть некоторые недостатки. Тот факт, что хосты в Интернете, по-видимому, напрямую взаимодействуют с устройством с поддержкой NAT, а не с фактическим хостом внутри частной сети, создает ряд проблем:

  • Один из недостатков использования NAT связан с производительностью сети, особенно для протоколов реального времени, таких как VoIP . NAT увеличивает задержки переключения, потому что перевод каждого адреса IPv4 в заголовках пакетов требует времени;
  • Другим недостатком использования NAT является то, что сквозная адресация теряется. Многие интернет-протоколы и приложения зависят от сквозной адресации от источника до места назначения. Некоторые приложения не работают с NAT. Приложения, которые используют физические адреса, а не квалифицированное доменное имя, не доходят до адресатов, которые транслируются через NAT-маршрутизатор. Иногда эту проблему можно избежать, реализуя статические сопоставления NAT;
  • Также теряется сквозная трассировка IPv4. Сложнее трассировать пакеты, которые подвергаются многочисленным изменениям адресов пакетов в течение нескольких NAT-переходов, что затрудняет поиск и устранение неполадок;
  • Использование NAT также затрудняет протоколы туннелирования, такие как IPsec, поскольку NAT изменяет значения в заголовках, которые мешают проверкам целостности, выполняемым IPsec и другими протоколами туннелирования;
  • Службы, требующие инициирования TCP-соединений из внешней сети, или stateless протоколы, например, использующие UDP, могут быть нарушены. Если маршрутизатор NAT не настроен для поддержки таких протоколов, входящие пакеты не могут достичь своего адресата;

Полезна ли Вам эта статья?

Пожалуйста, расскажите почему?

Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!

IP-адреса являются дефицитным ресурсом. У провайдера может быть /16-адрес (бывший класс В), дающий возможность подключить 65 534 хоста. Если клиентов становится больше, начинают возникать проблемы. Хостам, подключающимся к Интернету время от времени по обычной телефонной линии, можно выделять IP-адреса динамически, только на время соединения. Тогда один /16-адрес будет обслуживать до 65 534 активных пользователей, и этого, возможно, будет достаточно для провайдера, у которого несколько сотен тысяч клиентов. Когда сессия связи завершается, IP-адрес присваивается новому соединению. Такая стратегия может решить проблемы провайдеров, имеющих не очень большое количество частных клиентов, соединяющихся по телефонной линии, однако не поможет провайдерам, большую часть клиентуры которых составляют организации.

Дело в том, что корпоративные клиенты предпочитают иметь постоянное соединение с Интернетом, по крайней мере в течение рабочего дня. И в маленьких конторах, например туристических агенствах, состоящих из трех сотрудников, и в больших корпорациях имеются локальные сети, состоящие из некоторого числа компьютеров. Некоторые компьютеры являются рабочими станциями сотрудников, некоторые служат веб-серверами. В общем случае имеется маршрутизатор ЛВС, соединенный с провайдером по выделенной линии для обеспечения постоянного подключения. Такое решение означает, что с каждым компьютером целый день связан один IP-адрес. Вообще-то даже все вместе взятые компьютеры, имеющиеся у корпоративных клиентов, не могут перекрыть имеющиеся у провайдера IP-адреса. Для адреса длины /16 этот предел равен, как мы уже отмечали, 65 534. Однако если у поставщика услуг Интернета число корпоративных клиентов исчисляется десятками тысяч, то этот предел будет достигнут очень быстро.

Проблема усугубляется еще и тем, что все большее число частных пользователей желают иметь ADSL или кабельное соединение с Интернетом. Особенности этих способов заключаются в следующем:

а) пользователи получают постоянный IP-адрес;

б) отсутствует повременная оплата (взимается только ежемесячная абонентская плата).

Пользователи такого рода услуг имеют постоянное подключение к Интернету. Развитие в данном направлении приводит к возрастанию дефицита IP-адресов. Присваивать IP-адреса «на лету», как это делается при телефонном подключении, бесполезно, потому что число активных адресов в каждый момент времени может быть во много раз больше, чем имеется у про­вайдера.

Часто ситуация еще больше усложняется за счет того, что многие пользователи ADSL и кабельного Интернета имеют дома два и более компьютера (например, по одному на каждого члена семьи) и хотят, чтобы все машины имели выход в Интернет. Что же делать - ведь есть только один IP-адрес, выданный провайдером! Решение таково: необходимо установить маршрутизатор и объединить все компьютеры в локальную сеть. С точки зрения провайдера, в этом случае семья будет выступать в качестве аналога маленькой фирмы с несколькими компьютерами. Добро пожаловать в корпорацию Пупкиных!

Проблема дефицита IP-адресов отнюдь не теоретическая и отнюдь не относится к отдаленному будущему. Она уже актуальна, и бороться с ней приходится здесь и сейчас. Долговременный проект предполагает тотальный перевод всего Интернета на протокол IPv6 со 128-битной адресацией. Этот переход действительно постепенно происходит, но процесс идет настолько медленно, что затягивается на годы. Видя это, многие поняли, что нужно срочно найти какое-нибудь решение хотя бы на ближайшее время. Такое решение было найдено в виде метода трансляции сетевого адреса, NAT (Network Address Translation) , описанного в RFC 3022. Суть его мы рассмотрим позже, а более подробную информа­цию можно найти в (Butcher, 2001).

Основная идея трансляции сетевого адреса состоит в присвоении каждой фирме одного IP-адреса (или, по крайней мере, небольшого числа адресов) для интернет-трафика. Внутри фирмы каждый компьютер получает уникальный IP-адрес, используемый для маршрутизации внутреннего трафика. Однако как только пакет покидает пределы здания фирмы и направляется к провайдеру, выполняется трансляция адреса. Для реализации этой схемы было создано три диапазона так называемых частных IP-адресов. Они могут использоваться внутри компании по ее усмотрению. Единственное ограничение заключается в том, что пакеты с такими адресами ни в коем случае не должны появляться в самом Интернете. Вот эти три зарезервированных диапазона:

10.0.0.0 - 10.255.255.255/8 (16 777 216 хостов)

172.16.0.0 - 172.31.255.255/12 (1 048 576 хостов)

192.168.0.0 -192.168.255.255/16 (65 536 хостов)

Работа метода трансляции сетевых адресов показана на нжеследующей схеме. В пределах территории компании у каждой машины имеется собственный уникальный адрес вида 10.x.y.z. Тем не менее, когда пакет выходит за пределы владений компании, он проходит через NAT-блок, транслирующий внутренний IP-адрес источника (10.0.0.1 на рисунке) в реальный IP-адрес, полученный компанией от провайдера (198.60.42.12 для нашего примера). NAT-блок обычно представляет собой единое устройство с брандмауэром , обеспечивающим безопасность путем строго отслеживания входящего и исходящего -трафика компании. NAT-блок может быть интегрирован с маршрутизатором компании.

Мы до сих пор обходили одну маленькую деталь: когда приходит ответ на запрос (например, от веб-сервера), он ведь адресуется 198.60.42.12. Как же NAT-блок узнает, каким внутренним адресом заменить общий адрес компании? Вот в этом и состоит главная проблема использования трансляции сетевых адресов. Если бы в заголовке IP-пакета было свободное поле, его можно было бы использовать для запоминания адреса того, кто посылал запрос. Но в заголовке остается неиспользованным всего один бит. В принципе, можно было бы создать такое поле для истинного адреса источника, но это потребовало бы изменения IP-кода на всех машинах по всему Интернету. Это не лучший выход, особенно если мы хотим найти быстрое решение проблемы нехватки IP-адресов.

На самом деле произошло вот что. Разработчики NAT подметили, что большая часть полезной нагрузки IP-пакетов - это либо TCP, либо UDP . Оба формата имеют заголовки, содержащие номера портов источника и приемника. Номера портов представляют собой 16-разрядные целые числа, показывающие, где начинается и где заканчивается TCP-соединение. Место хранения номеров портов используется в качестве поля, необходимого для работы NAT.

Когда процесс желает установить TCP-соединение с удаленным процессом, он связывается со свободным TCP-портом на собственном компьютере. Этот порт становится портом источника, который сообщает TCP-коду информацию о том, куда направлять пакеты данного соединения. Процесс также определяет порт назначения. Посредством порта назначения сообщается, кому отдать пакет на удаленной стороне. Порты с 0 по 1023 зарезервированы для хорошо известных сервисов. Например, 80-й порт используется веб-серверами, соответственно, на них могут ориентироваться удаленные клиенты. Каждое исходящее сообщение TCP содержит информацию о порте источника и порте назначения. Вместе они служат для идентификации процессов на обоих концах, использующих соединение.

Проведем аналогию, которая несколько прояснит принцип использования портов. Допустим, у компании есть один общий телефонный номер. Когда люди набирают его, они слышат голос оператора, который спрашивает, с кем именно они хотели бы соединиться, и подключают их к соответствующему добавочному телефонному номеру. Основной телефонный номер является аналогией IP-адреса компании, а добавочные на обоих концах аналогичны портам. Для адресации портов используется 16-битное поле, которое идентифицирует процесс, получающий входящий пакет.

С помощью поля Порт источника мы можем решить проблему отображения адресов. Когда исходящий пакет приходит в NAT-блок, адрес источника вида 192.168.c.d заменяется настоящим IP-адресом. Кроме того, поле Порт источника TCP заменяется индексом таблицы перевода NAT-блока, содержащей 65 536 записей. Каждая запись содержит исходный IP-адрес и номер исходного порта. Наконец, пересчитываются и вставляются в пакет контрольные суммы заголовков TCP и IP. Необходимо заменять поле Порт источника, потому что машины с местными адресами 10.0.0.1 и 10.0.0.2 могут случайно пожелать воспользоваться одним и тем же портом (5000-м, например). Так что для однозначной идентификации процесса отправителя одного поля Порт источника оказывается недостаточно.

Когда пакет прибывает на NAT-блок со стороны провайдера, извлекается значение поля Порт источника заголовка TCP. Оно используется в качестве индекса таблицы отображения NAT-блока. По найденной в этой таблице записи определяются внутренний IP-адрес и настоящий Порт источника TCP. Эти два значения вставляются в пакет. Затем заново подсчитываются контрольные суммы TCP и IP. Пакет передается на главный маршрутизатор компании для нормальной доставки с адресом вида 192.168.y.z.

В случае применения ADSL или кабельного Интернета трансляция сетевых адресов может применяться для облегчения борьбы с нехваткой адресов. Присваиваемые пользователям адреса имеют вид 10.x.y.z. Как только пакет покидает пределы владений провайдера и уходит в Интернет, он попадает в NAT-блок, который преобразует внутренний адрес в реальный IP-адрес провайдера. На обратном пути выполняется обратная операция. В этом смысле для всего остального Интернета провайдер со своими клиентами, использующими ADSL и кабельное:оединение, представляется в виде одной большой компании.

Хотя описанная выше схема частично решает проблему нехватки IP-адресов, многие приверженцы IP рассматривают NAT как некую заразу, распространяющуюся по Земле. И их можно понять.

Во-первых, сам принцип трансляции сетевых адресов никак не вписывается в архитектуру IP, которая подразумевает, что каждый IP-адрес уникальным образом идентифицирует только одну машину в мире. Вся программная структура Интернета построена на использовании этого факта. При трансляции сетевых адресов получается, что тысячи машин могут (и так происходит в действительности) иметь адрес 10.0.0.1.

Во-вторых, NAT превращает Интернет из сети без установления соединения в нечто подобное сети, ориентированной на соединение. Проблема в том, что NAT-блок должен поддерживать таблицу отображения для всех соединений, проходящих через него. Запоминать состояние соединения - дело сетей, ориентированных на соединение, но никак не сетей без установления соединений. Если NAT-блок ломается и теряются его таблицы отображения, то про все TCP-соединения, проходящие через него, можно забыть. При отсутствии трансляции сетевых адресов выход из строя маршрутизатора не оказывает никакого эффекта на деятельность TCP. Отправляющий процесс просто выжидает несколько секунд и посылает заново все неподтвержденные пакеты. При использовании NAT Интернет становится таким же восприимчивым к сбоям, как сеть с коммутацией каналов.

В-третьих, NAT нарушает одно из фундаментальных правил построения многоуровневых протоколов: уровень k не должен строить никаких предположений относительно того, что именно уровень k + 1 поместил в поле полезной нагрузки. Этот принцип определяет независимость уровней друг от друга. Если когда-нибудь на смену TCP придет ТСР-2, у которого будет другой формат заголовка (например, 32-битная адресация портов), то трансляция сетевых адресов потерпит фиаско. Вся идея многоуровневых протоколов состоит в том, чтобы изменения в одном из уровней никак не могли повлиять на остальные уровни. NAT разрушает эту независимость.

В-четвертых, процессы в Интернете вовсе не обязаны использовать только TCP или UDP. Если пользователь машины А решит придумать новый протокол транспортного уровня для общения с пользователем машины В (это может быть сделано, например, для какого-нибудь мультимедийного приложения), то ему придется как-то бороться с тем, что NAT-блок не сможет корректно обработать поле Порт источника TCP.

В-пятых, некоторые приложения вставляют IP-адреса в текст сообщений. Получатель извлекает их оттуда и затем обрабатывает. Так как NAT не знает ничего про такой способ адресации, он не сможет корректно обработать пакеты, и любые попытки использования этих адресов удаленной стороной приведут к неудаче. Протокол передачи файлов, FTP (File Transfer Protocol), использует именно такой метод и может отказаться работать при трансляции сетевых адресов, если только не будут приняты специальные меры. Протокол интернет-телефонии Н.323 также обладает подобным свойством. Можно улучшить метод NAT и заставить его корректно работать с Н.323, но невозможно же дорабатывать его всякий раз, когда появляется новое приложение.

В-шестых, поскольку поле Порт источника является 16-разрядным, то на один IP-адрес может быть отображено примерно 65 536 местных адресов машин. На самом деле это число несколько меньше: первые 4096 портов зарезервированы для служебных нужд. В общем, если есть несколько IP-адресов, то каждый из них может поддерживать до 61 440 местных адресов.

Эти и другие проблемы, связанные с трансляцией сетевых адресов, обсуждаются в RFC 2993. Обычно противники использования NAT говорят, что решение проблемы нехватки IP-адресов путем создания временной заплатки только мешает процессу настоящей эволюции, заключающемуся в переходе на IPv6. Но если вернутся в реальность, то мы увидим, что в большинстве случаев NAT - это просто незаменимая вещь, особенно для малых офисов с числом компьютеров от нескольких штук до нескольких десятков. NAT можно реализовать собственными силами в OS Linux используя

Ладно, забудем на время эту лирику.
Вообще говоря, списки доступа бывают разными:

Стандартные
- Расширенные
- Динамические
- Рефлексивные
- Повременные

Мы своё внимание остановим сегодня на первых двух, а более подробно обо всех вы можете прочитать у циски .

Входящий и исходящий трафик

Для почину давайте-ка разберёмся с одной вещью. Что понимать под входящим и исходящим трафиком? Это нам в будущем понадобится. Входящий трафик - этот тот, который приходит на интерфейс извне.

Исходящий - тот, который отправляется с интерфейса вовне.

Список доступа вы можете применить либо на входящий трафик, тогда неугодные пакеты не будут даже попадать на маршрутизатор и соответственно, дальше в сеть, либо на исходящий, тогда пакеты приходят на маршрутизатор, обрабатываются им, доходят до целевого интерфейса и только на нём дропятся.

Стандартный список доступа проверяет только адрес отправителя. Расширенный- адрес отправителя, адрес получателя, а также порт. Стандартные ACL рекомендуется ставить как можно ближе к получателю (чтобы не порезать больше, чем нужно), а расширенные- ближе к отправителю (чтобы как можно раньше дропнуть нежелательный трафик).

Практика

Давайте сразу к практике. Что бы нам такого наограничивать в нашей маленькой сети “Лифт ми Ап”?

А) WEB-сервер. Разрешить доступ всем по порту TCP 80 (протокол HTTP). Для того устройства, с которого будет производиться управление (у нас же есть админ) нужно открыть telnet и ftp, но ему мы дадим полный доступ. Всем остальным отбой.

Б) Файловый сервер. На него у нас должны попадать резиденты Лифт ми Ап по портам для общих папок, а все остальные по FTP.

В) Почтовый сервер. Тут у нас запущены SMTP и POP3, то есть порты TCP 25 и 110. Так же для админа открываем доступ на управление. Других блокируем.

Г) Для будущего DNS-сервера нужно открыть порт UDP 53

Д) В сеть серверов разрешить ICMP-сообщения

Е) Поскольку сеть Other у нас для всех беспартийных, кто не вошёл в ФЭО, ПТО и Бухгалтерию, то мы их всех ограничим, а некоторым только дадим доступ (в числе них мы и админ)

ё) В сеть управления нужно пускать опять же только админа, ну и конечно себя любимого.

Ж) Не будем строить препоны общению между собой сотрудников отделов.

а) Доступ на WEB-сервер

Тут у нас работает политика запрещено всё, что не разрешено. Поэтому нам сейчас надо кое-что открыть, а всё остальное закрыть.
Поскольку мы защищаем сеть серверов, то и лист будем вешать на интерфейс, идущий в сторону них то есть, на FE0/0.3 Вопрос только на in или на out нам нужно это делать? Если мы не хотим пускать пакеты в сторону серверов, которые уже оказались на маршрутизаторе, то это будет исходящий трафик. То есть адреса назначения (destination) у нас будут в сети серверов (из них мы будем выбирать на какой именно сервер идёт трафик), а адреса источников (source) могут быть любыми - как из нашей корпоративной сети, так и из интернета.
Ещё одно замечание: поскольку фильтровать мы будем в том числе по адресу назначения (на WEB-сервер одни правила, на почтовый - другие), то список контроля доступа нам понадобится расширенный (extended), только он позволяет делать это.

Правила в списке доступа проверяются по порядку сверху вниз до первого совпадения. Как только одно из правил сработало, независимо от того permit это или deny, проверка прекращается и обработка трафика происходит на основе сработавшего правила.
То есть если мы хотим защитить WEB-сервер, то в первую очередь нам нужно дать разрешение, потому что, если мы в первой же строке настроим deny ip any any - то оно всегда будет срабатывать и трафик не будет ходить вообще. Any - это специальное слово, которое означает адрес сети и обратную маску 0.0.0.0 0.0.0.0 и означает, что под правило подпадают абсолютно все узлы из любых сетей. Другое специальное слово - host - оно означает маску 255.255.255.255 - то есть именно один единственный указанный адрес.
Итак, первое правило: разрешить доступ всем по порту 80


msk-arbat-gw1(config-ext-nacl)# remark WEB
any host 172.16.0.2 eq 80

Разрешаем (permit ) TCP-трафик от любого узла (any ) на хост (host - именно один адрес) 172.16.0.2, адресованный на 80-й порт.
Пробуем повесить этот список доступа на интерфейс FE0/0.3:

msk-arbat-gw1(config-subif)# ip access-group Servers-out out

Проверяем с любого из наших подключенных компьютеров:

Как видите страничка открывается, но что там у нас с пингом?

И так с любого другого узла?

Дело в том, что после всех правил в цисковских ACL в конце дописывается неявное deny ip any any (implicit deny). Что для нас это означает? Любой пакет, выходящий с интерфейса и не отвечающий ни одному правилу из ACL, подпадает под implicit deny и отбрасывается. То есть хоть пинг, хоть фтп, хоть что угодно здесь уже не пройдёт.

Идём дальше: надо дать полный доступ компьютеру, с которого будет производиться управление. Это будет компьютер нашего админа с адресом 172.16.6.66 из сети Other.
Каждое новое правило добавляется автоматически в конец списка, если он уже существует:

msk-arbat-gw1(config)#
msk-arbat-gw1(config-ext-nacl)# permit tcp host 172.16.6.66 host 172.16.0.2 range 20 ftp
msk-arbat-gw1(config-ext-nacl)# permit tcp host 172.16.6.66 host 172.16.0.2 eq telnet

Вот и всё. Проверяем с нужного узла (поскольку серверами в РТ не поддерживается телнет, проверяем на FTP):

То есть FTP-сообщение пришло на маршрутизатор и должно уйти с интерфейса FE0/0.3. Маршрутизатор проверяет и видит, что пакет подходит под добавленное нами правило и пропускает его.

А с постороннего узла

Пакет FTP не попадает ни под одно из правил, кроме неявного deny ip any any и отбрасывается.

б)Доступ на файловый сервер

Тут бы надо в первую очередь определиться с тем, кто будет “резидентом”, кому нужно дать доступ. Конечно, это те, кто имеет адрес из сети 172.16.0.0/16 - только им и дадим доступ.
Теперь с общими папками. В большинстве современных систем уже используется для этого протокол SMB, которому нужен порт TCP 445. На более старых версиях использовался NetBios, который кормился аж через три порта: UDP 137 и 138 и TCP 139. Договорившись с нашим админом, настроим 445 порт (правда проверить в рамках РТ, конечно, не получится). Но кроме этого, нам понадобятся порты для FTP - 20, 21, причём не только для внутренних хостов, но и для соединений из интернета:
msk-arbat-gw1(config)# ip access-list extended Servers-out
msk-arbat-gw1(config-ext-nacl)# permit tcp 172.16.0.0 0.0.255.255 host 172.16.0.3 eq 445
msk-arbat-gw1(config-ext-nacl)# permit tcp any host 172.16.0.3 range 20 21

Тут мы повторно применили конструкцию range 20 21 - для того, чтобы в одной строке задать несколько портов. Для FTP, вообще говоря, недостаточно только 21-го порта. Дело в том, что если вы откроете только его, то авторизация у вас будет проходить, а передача файлов нет.

0.0.255.255 - обратная маска (wildcard mask). О том, что это такое, поговорим чуточку позже

в) Доступ на почтовый сервер

Продолжаем нарабатывать практику - теперь с почтовым сервером. В рамках того же списка доступа добавляем новые нужные нам записи.
Вместо номеров портов для широкораспространённых протоколов можно указывать их имена:
msk-arbat-gw1(config)# ip access-list extended Servers-out
msk-arbat-gw1(config-ext-nacl)#permit tcp any host 172.16.0.4 eq pop3
msk-arbat-gw1(config-ext-nacl)#permit tcp any host 172.16.0.4 eq smtp

г) DNS-сервер

msk-arbat-gw1(config)# ip access-list extended Servers-out
msk-arbat-gw1(config-ext-nacl)# permit udp 172.16.0.0 0.0.255.255 host 172.16.0.5 eq 53

д) ICMP

Осталось исправить ситуацию с пингом. Ничего страшного нет в том, чтобы добавить правила в конец списка, но как-то эстетически приятнее будет увидеть их вначале.
Используем несложный чит для этого. Для это можно воспользоваться текстовым редактором, например. Скопируйте туда из show run кусок про ACL и добавьте следующие строки:
no ip access-list extended Servers-out
ip access-list extended Servers-out
permit icmp any any
remark WEB



remark FILE


remark MAIL


remark DNS

Первой строкой мы удаляем существующий список, далее создаём его заново и перечисляем все новые правила в нужном нам порядке. Командой в третьей строке мы разрешили проход всех ICMP-пакетов от любых хостов на любые хосты.

Далее просто копируем всё скопом и вставляем в консоль. Интерфейс интерпретирует каждую строку как отдельную команду и выполняет её. Таким образом, мы заменили старый список новым.
Проверяем, что пинг есть:

Прекрасно.

Данный “чит” хорош для первоначальной конфигурации или если вы точно понимаете, что делаете. На рабочей сети, когда вы настраиваете удалённо ACL, вы рискуете остаться без доступа на настраиваемую железку.

Чтобы вставить правило в начало или в любое другое нужное место, вы можете прибегнуть к такому приёму:
ip access-list extended Servers-out
1 permit icmp any any

Каждое правило в списке пронумеровано с определённым шагом и если перед словом permit/deny вы поставите число, то правило будет добавлено не в конец, а в нужное вам место. К сожалению, такая фича не работает в РТ.
Если будет вдруг необходимо (заняты все подряд идущие числа между правилами) вы всегда можете перенумеровать правила (в этом примере назначается номер первого правила 10(первое число) и инкремент 10):
ip access-list resequence Servers-out 10 10

В итоге Access List на серверную сеть будет выглядеть так:
ip access-list extended Servers-out
permit icmp any any
remark WEB
permit tcp any host 172.16.0.2 eq www
permit tcp host 172.16.6.66 host 172.16.0.2 range 20 ftp
permit tcp host 172.16.6.66 host 172.16.0.2 eq telnet
remark FILE
permit tcp 172.16.0.0 0.0.255.255 host 172.16.0.3 eq 445
permit tcp any host 172.16.0.3 range 20 21
remark MAIL
permit tcp any host 172.16.0.4 eq pop3
permit tcp any host 172.16.0.4 eq smtp
remark DNS
permit udp 172.16.0.0 0.0.255.255 host 172.16.0.5 eq 53

Сейчас наш админ имеет доступ только на WEB-сервер. Откройте ему полный доступ на всю сеть. Это первое домашнее задание.

е) Права пользователей из сети Other

До сих пор нам нужно было не впускать кого-то куда-то, поэтому мы обращали внимание на адрес назначения и список доступа вешали на исходящий с интерфейса трафик.

Теперь нам нужно не выпускать : никакие запросы от компьютеров из сети Other не должны выходить за пределы. Ну, конечно, кроме тех, которые мы специально разрешим.

msk-arbat-gw1(config)# ip access-list extended Other-in

msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.6.61 any



Тут мы не могли сначала запретить всем, а потом разрешить избранным, потому что абсолютно все пакеты попадали бы под правило deny ip any any и permit не срабатывал бы вообще.
Применяем на интерфейс. На этот раз на вход:
msk-arbat-gw1(config)#int fa0/0.104
msk-arbat-gw1(config-subif)#ip access-group Other-in in

то есть все IP-пакеты от хоста с адресом 172.16.6.61 или 172.16.6.66 разрешено передавать куда бы они ни были предназначены. Почему мы тут используем тоже расширенный список доступа? Ведь, казалось бы, мы проверяем только адрес отправителя. Потому что админу мы дали полный доступ, а вот гостю компании “Лифт ми Ап”, например, который попадёт в эту же сеть совсем ни к чему доступ куда-либо, кроме как в Интернет.

ё) Сеть управления

Ничего сложного. Правило будет выглядеть так:
msk-arbat-gw1(config)# ip access-list extended Management-out
msk-arbat-gw1(config-ext-nacl)# remark IAM
msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.6.61 172.16.1.0 0.0.0.255
msk-arbat-gw1(config-ext-nacl)# remark ADMIN
msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.6.66 172.16.1.0 0.0.0.255

Данный ACL применяем на out на интерфейс FE 0/0.2:
msk-arbat-gw1(config)# int fa0/0.2
msk-arbat-gw1(config-subif)#ip access-group Management-out out

ж) Более никаких ограничений

Готово

Маска и обратная маска

До сих пор мы без объяснения давали странный параметр вида 0.0.255.255, подозрительно напоминающий маску подсети.
Немного сложная для понимания, но именно она - обратная маска - используется для определения хостов, которые подпадут под правило.
Чтобы понять что такое обратная маска, вы должны знать, что такое обычная.

Начнём с самого простого примера.

Обычная сеть на 256 адресов: 172.16.5.0/24, например. Что означает эта запись?
А означает она ровно следующее

IP-адрес. Десятичная запись 172 16 5 0
IP-адрес. Двоичная запись 10101100 00010000 00000101 00000000
11111111 11111111 11111111 00000000
255 255 255 0

IP-адрес - это параметр длиною 32 бита, поделенный на 4 части, который вы привыкли видеть в десятичной форме.
Маска подсети также имеет длину 32 бита - она фактически шаблон, трафарет, по которому определяется принадлежность адреса подсети. Там, где в маске стоят единицы, значение меняться не может, то есть часть 172.16.5 совершенно неизменна и она будет одинакова для всех хостов этой подсети, а вот та, где нули - варьируется.
То есть во взятом нами примере 172.16.5.0/24 - это адрес сети, а хосты будут 172.16.5.1-172.16.5.254 (последний 255 - широковещательный), потому что 00000001 - это 1, а 11111110 - 254 (речь о последнем октете адреса). /24 означает, что длина маски 24 бита, то есть у нас идёт 24 единицы - неизменная часть и 8 нулей.
Другой случай, когда маска у нас, например, 30 бит, а не 24.
К примеру 172.16.2.4/30. Распишем это так:

IP-адрес. Десятичная запись 172 16 2 4
IP-адрес. Двоичная запись 10101100 00010000 00000010 00000100
Маска подсети. Двоичная запись 11111111 11111111 11111111 11111100
Маска подсети. Десятичная запись 255 255 255 252

Как видите, для этой подсети могут меняться только последние два бита. Последний октет может принимать следующие 4 значения:
00000100 - адрес подсети (4 в десятичной системе)
00000101 - адрес узла (5)
00000110 - адрес узла (6)
00000111 - широковещательный (7)
Всё, что за пределами этого - уже другая подсеть

То есть теперь вам должно быть чуть-чуть понятно, что маска подсети - это последовательность 32-х бит, где сначала идут единицы, означающие адрес подсети, потом идут нули, означающие адрес хоста. При этом чередоваться нули и единицы в маске не могут чередоваться. То есть маска 11111111.11100000.11110111.00000000 невозможна

А что же такое обратная маска (wildcard)?
Для подавляющего большинства админов и некоторых инженеров - это не более, чем инверсия обычной маски. То есть нули вначале задают адрес части, которая должна совпадать обязательно, а единицы наоборот свободную часть.
То есть на взятом нами первом примере, если вы хотите отфильтровать все хосты из подсети 172.16.5.0/24, то вы зададите правило в Access-листе:
…. 172.16.5.0 0.0.0.255
Потому что обратная маска будет выглядеть так:

00000000.00000000.00000000.11111111

Во втором примере с сетью 172.16.2.4/30 обратная маска будет выглядеть так: 30 нулей и две единицы:

Обратная маска. Двоичная запись 00000000 00000000 00000000 00000011
Обратная маска. Десятичная запись 0 0 0 3

Соответственно параметр в access-листе будет выглядеть так:
…. 172.16.2.4 0.0.0.3
Позже, когда вы съедите собаку на просчётах масок и обратных масок, вы запомните самые употребляемые цифры, количество хостов в той или иной маске, поймёте, что в описанных ситуациях последний октет обратной маски получается вычитанием из 255 цифры последнего октета обычной маски (255-252=3) и т.д. А пока нужно много трудиться и считать)

Но на самом деле обратная маска - это несколько более богатый инструмент, здесь вы можете объединять адреса внутри одной подсети или даже объединять подсети, но самое главное отличие, вы можете чередовать нули и единицы. Это позволяет вам, например, отфильтровать определённый узел (или группу) в нескольких подсетях одной строкой.

Пример 1

Дано: сеть 172.16.16.0/24
Надо: отфильтровать первые 64 адреса (172.16.16.0-172.16.16.63)
Решение: 172.16.16.0 0.0.0.63

Пример 2

Дано: сети 172.16.16.0/24 и 172.16.17.0/24
Надо: отфильтровать адреса из обеих сетей
Решение: 172.16.16.0 0.0.1.255

Пример 3

Дано: Сети 172.16.0.0-172.16.255.0
Надо: отфильтровать хост с адресом 4 из всех подсетей
Решение: 172.16.16.0 0.0.255.4

Работа ACL в картинках

Гипотетическая сеть:

1) На маршрутизаторе RT1 на интерфейсе FE0/1 на вход у нас разрешено всё, кроме ICMP.

2) На маршрутизаторе RT2 на интерфейсе FE0/1 на выход запрещены SSH и TELNET

Тесты
кликабельны
1) Пинг с компьютера ПК1 на Сервер1

2) TELNET с компьютера ПК1 на Сервер1

3) SSH с компьютера ПК1 на Сервер2

4) Пинг с Сервера2 на ПК1

Дополнения

1) Правила, действующие на исходящий трафик (out) не будут фильтровать трафик самого устройства. То есть, если нужно запретить самой циске доступ куда-либо, то вам придётся на этом интерфейсе фильтровать входящий трафик (ответный оттуда, куда надо запретить доступ).

2) C ACL надо быть аккуратнее. При небольшой ошибке в правиле, неправильном порядке настройки или вообще плохо продуманном списке вы можете остаться без доступа к устройству.
Например, вы хотите закрыть доступ куда угодно для сети 172.16.6.0/24, кроме своего адреса 172.16.6.61 и задаёте правила так:

deny ip 172.16.6.0 0.0.0.255 any
permit ip host 172.16.6.61 any

Как только вы примените ACL на интерфейс, вы сразу потеряете доступ к маршрутизатору, потому что вы попадаете под первое правило и второе даже не проверяется.
Вторая неприятная ситуация, которая может с вами приключиться: под ACL попадёт трафик, который не должен был попасть.
Вообразите такую ситуацию: у нас в серверной есть FTP-сервер в пассивном режиме. Для доступа к нему вы открыли 21-й порт в ACL Servers-out . После первичного установления соединения FTP-сервер сообщает клиенту порт, по которому он готов передавать/принимать файлы, например, 1523-й. Клиент пытается установить TCP-соединение на этот порт, но натыкается на ACL Servers-out, где такого разрешения нету - так и кончается сказка про успешный трансфер. В нашем примере выше, где мы настраивали доступ на файловый сервер, мы открыли доступ только по 20 и 21-му, потому что для примера этого достаточно. В реальной жизни придётся повозиться. Немного примеров конфигурации ACL для распространенных случаев.

3) Из 2-го пункта вытекает очень похожая и интересная проблема.
Вздумалось вам, например повесить на интерфейс в интернет такие вот ACL:

access-list out permit tcp host 1.1.1.1 host 2.2.2.2 eq 80
access-list in permit tcp host 2.2.2.2 any eq 80

Казалось бы: хосту с адресом 1.1.1.1 разрешён доступ по 80-му порту на сервер 2.2.2.2 (первое правило). И обратно от сервера 2.2.2.2 разрешены соединения внутрь.
Но нюанс тут в том, что компьютер 1.1.1.1 устанавливает соединение НА 80-й порт, но С какого-то другого, например, 1054, то есть ответный пакет от сервера приходит на сокет 1.1.1.1:1054, не подпадает под правило в ACL на IN и отбрасывается ввиду неявного deny ip any any.
Чтобы избежать такой ситуации, и не открывать всем пучком порты, можно прибегнуть к такой хитрости в ACL на in:
permit tcp host 2.2.2.2 any established.

Подробности такого решения в одной из следующих статей.

4) Говоря про современный мир, нельзя обойти такой инструмент, как объектные группы (Object-group).

Допустим, надо составить ACL, выпускающий три определенных адреса в интернет по трем одинаковым портам c перспективой расширения количества адресов и портов. Как это выглядит без знания объектных групп:

ip access-list extended TO-INTERNET
permit tcp host 172.16.6.66 any eq 80
permit tcp host 172.16.6.66 any eq 8080
permit tcp host 172.16.6.66 any eq 443

Permit tcp host 172.16.6.67 any eq 80
permit tcp host 172.16.6.67 any eq 8080
permit tcp host 172.16.6.67 any eq 443

Permit tcp host 172.16.6.68 any eq 80
permit tcp host 172.16.6.68 any eq 8080
permit tcp host 172.16.6.68 any eq 443


При увеличении количества параметров сопровождать такой ACL становится всё труднее и труднее, легко ошибиться при настройке.
Зато, если обратиться к объектным группам, то это приобретает следующий вид:
object-group service INET-PORTS
description Ports allowed for some hosts
tcp eq www
tcp eq 8080
tcp eq 443

Object-group network HOSTS-TO-INET
description Hosts allowed to browse the net
host 172.16.6.66
host 172.16.6.67
host 172.16.6.68

Ip access-list extended INET-OUT
permit object-group INET-PORTS object-group HOSTS-TO-INET any


на первый взгляд несколько угрожающе выглядит, но если разобраться, то это очень удобно.

4) Очень полезную для траблшутинга информацию можно получить из вывода команды show ip access-lists %имя ACL% . Кроме собственно списка правил указанного ACL, эта команда показывает количество совпадений по каждому правилу.

msk-arbat-gw1#sh ip access-lists nat-inet
Extended IP access list nat-inet





(4 match(es))



А дописав в конце любого правила log , мы сможем получать сообщения о каждом совпадении в консоль. (последнее не работает в PT)

NAT

Network Address Translation - механизм в хозяйстве совершенно необходимый уже с 1994-го года. Много сессий об него сломано и пакетов потеряно.
Нужен он чаще всего для подключения вашей локальной сети к Интернету. Дело в том, что теоретически существует 255*255*255*255=4 228 250 625. 4 миллиарда адресов. Даже если бы у каждого жителя планеты был всего один компьютер, адресов бы уже не хватало. А тут разве что утюги к Интернету не подключаются. Умные люди сообразили это ещё в начале 90-х и как временное решение предложили разделить пространство адресов на публичные (белые) и приватные (частные, серые).
К последним относятся три диапазона:

10.0.0.0/8
172.16.0.0/12
192.168.0.0/16

Их вы свободно можете использовать в своей частной сети, и поэтому, разумеется, они будут повторяться. Как же быть с уникальностью? Кому будет отвечать WEB-сервер, которому пришёл запрос с обратным адресом 192.168.1.1? Ростелекому? Компании Татнефть? Или вашему комнатному Длинку? В большом интернете никто ничего не знает о приватных сетях - они не маршрутизируются.
Тут и выходит на сцену NAT. По большому счёту, это обман, подстава. На натирующем устройстве ваш приватный адрес, грубо говоря, просто подменяется на белый адрес, который и будет фигурировать далее в пакете, пока он путешествует до WEB-сервера. А вот белые адреса очень даже хорошо маршрутизируются, и пакет точно вернётся обратно на натирующее устройство.
Но как оно в свою очередь поймёт, что с ним делать дальше? Вот с этим и разберёмся.

Типы NAT

Статический

В этом случае один внутренний адрес преобразуется в один внешний. И при этом все запросы, приходящие на внешний адрес будут транслироваться на внутренний. Словно бы этот хост и является обладателем этого белого IP-адреса.

Настраивается следующей командой:

Router (config)# ip nat inside source static 172.16.6.5 198.51.100.2

Что происходит:
1) Узел 172.16.6.5 обращается WEB-серверу. Он отправляет IP-пакет, где в качестве адреса получателя стоит 192.0.2.2, а отправителя 172.16.6.5.

2) По корпоративной сети пакет доставляется к шлюзу 172.16.6.1, где и настроен NAT

3) Согласно настроенной команде, маршрутизатор снимает текущий заголовок IP и меняет его на новый, где в качестве адреса отправителя уже фигурирует белый адрес 198.51.100.2.


4) По большому Интернету обновлённый пакет достигает сервера 192.0.2.2.

5) Тот видит, что ответ надо слать на 198.51.100.2 И подготавливает ответный IP-пакет. В качестве адреса отправителя собственно адрес сервера 192.0.2.2, адрес назначения - 198.51.100.2


6) Пакет обратно летит через Интернет, причём не факт, что тем же путём.

7) На натирующем устройстве указано, что все запросы на адрес 198.51.100.2 нужно перенаправлять на 172.16.6.5. Маршрутизатор снова раздевает спрятанный внутри TCP-сегмент и задаёт новый IP-заголовок (адрес отправителя не меняется, адрес назначения 172.16.6.5).


8) По внутренней сети пакет возвращается инициатору, которому даже и невдомёк, какие чудеса с ним творились на границе.
И так будет с каждым.
При этом если соединение инициируется из Интернета, пакеты автоматически, проходя через натирующее устройство, попадают на внутренний хост.

Такой подход бывает полезным, когда у вас есть сервер внутри вашей сети, к которому необходим полный доступ извне. Разумеется, этот вариант вы не можете использовать, если хотите триста хостов выпустить в Интернет через один адрес. Такой вариант NAT’а никак не поможет сохранить белые IP-адреса, но тем не менее он бывает полезен.

Динамический

У вас есть пул белых адресов, например, провайдер выделил вам сеть 198.51.100.0/28 c 16-ю адресами. Два из них (первый и последний) - адрес сети и широковещательный, ещё два адреса назначаются на оборудование для обеспечения маршрутизации. 12 оставшихся адресов вы можете использовать для NAT’а и выпускать через них своих пользователей.
Ситуация похожа на статический NAT - один приватный адрес транслируется на один внешний, - но теперь внешний не чётко зафиксирован, а будет выбираться динамически из заданного диапазона.
Настраивается он так:
Router(config)#ip nat pool lol_pool 198.51.100.3 198.51.103.14

Задали пул (диапазон) публичных адресов, из которого будет выбираться адрес для натирования
Router(config)#access-list 100 permit ip 172.16.6.0 0.0.0.255 any

Задаём список доступа, который пропускает все пакеты с адресом источника 172.16.6.х, где х варьируется 0-255.
Router(config)#ip nat inside source list 100 pool lol_pool

Этой командой мы стыкуем созданный ACL и пул.

Этот вариант тоже не универсальный, своих 300 пользователей вы так же не сможете выпустить всех в Интернет, если у вас нет 300 внешних адресов. Как только белые адреса исчерпаются, никто новый уже не сможет получить доступ в Интернет. При этом те пользователи, что уже успели отхватить себе внешний адрес, будут работать. Скинуть все текущие трансляции и освободить внешний адреса вам поможет команда clear ip nat translation *
Помимо динамического выделения внешних адресов, этот динамически NAT отличается от статического тем, что без отдельной настройки проброса портов уже невозможно внешнее соединение на один из адресов пула.

Many-to-One

Следующий тип имеет несколько названий: NAT Overload, Port Address Translation (PAT), IP Masquerading, Many-to-One NAT.
Последнее название говорит само за себя - через один внешний адрес выходит в мир много приватных. Это позволяет решить проблему с нехваткой внешних адресов и выпустить в мир всех желающих.
Тут надо бы дать пояснение, как это работает. Как два приватных адреса транслируются в один можно представить, но как маршрутизатор понимает кому нужно переслать пакет, вернувшийся из Интернета на этот адрес?
Всё очень просто:
Предположим, что от двух хостов из внутренней сети приходят пакеты на натирующее устройство. Оба с запросом к WEB-серверу 192.0.2.2.
Данные от хостов выглядят так:

Маршрутизатор расчехляет IP-пакет от первого хоста, извлекает из него TCP-сегмент, распечатывает его и узнаёт, с какого порта устанавливается соединение. У него есть внешний адрес 198.51.100.2, на который будет меняться адрес из внутренней сети.
Далее он выбирает свободный порт, например, 11874. И что он делает дальше? Все данные уровня приложений он упаковывает в новый TCP сегмент, где в качестве порта назначения по-прежнему остаётся 80 (именно на него ждёт коннектов WEB-сервер), а порт отправителя меняется с 23761 на 11874. Этот TCP-сегмент инкапсулируется в новый IP-пакет, где меняется IP-адрес отправителя с 172.16.6.5 на 198.51.100.2.
То же самое происходит для пакета от второго хоста, только выбирается следующий свободный порт, например 11875. “Свободный” означает, что он ещё не занят другими такими соединениями.
Данные, которые отправляются в интернет, теперь буду выглядеть так.

В свою NAT-таблицу он заносит данные отправителей и получателей

Для WEB-сервера - это два совершенно разных запроса, которые он должен обработать каждый индивидуально. После этого он отсылает ответ, который выглядит так:

Когда один из этих пакетов доходит до нашего маршрутизатора, тот сопоставляет данные в этом пакете со своими записями в NAT-таблице. Если совпадение найдено, происходит обратная процедура - пакету и TCP сегменту возвращаются его изначальные параметры только в качестве назначения:

И теперь пакеты доставляется по внутренней сети компьютерам-инициаторам, которым и невдомёк даже, что где-то с их данными так жёстко обошлись на границе.

Каждое ваше обращение - это отдельное соединение. То есть попытались вы открыть WEB-страницу - это протокол HTTP, использующий порт 80. Для этого ваш компьютер должен установить TCP-сессию с удалённым сервером. Такая сессия (TCP или UDP) определяется двумя сокетами: локальный IP-адрес: локальный порт и удалённый IP-адрес: удалённый порт. В обычной ситуации у вас устанавливается одно соединение компьютер-сервер, в случае же NATа соединения будет как бы два:, маршрутизатор-сервер и компьютер думает, что у него есть сессия компьютер-сервер.

Настройка отличается совершенно незначительно: добавочным словом overload:

Router(config)#access-list 101 permit 172.16.4.0 0.0.0.255
Router(config)#ip nat inside source list 101 interface fa0/1 overload

При этом, разумеется, сохраняется возможность настроить пул адресов:
Router(config)#ip nat pool lol_pool 198.51.100.2 198.51.103.14
Router(config)#access-list 100 permit 172.16.6.0 0.0.0.255
Router(config)#ip nat inside source list 100 pool lol_pool overload

Перенаправление портов

Иначе говорят ещё проброс портов или mapping.
Когда мы только начали говорить про NAT, трансляция у нас была один-в-один и все запросы, приходящие извне автоматически перенаправлялись на внутренний хост. Таким образом можно было бы выставить сервер наружу в Интернет.
Но если у вас нет такой возможности - вы ограничены в белых адресах, или не хотите выставлять всем пучком портов его наружу, что делать?
Вы можете указать, что все запросы, приходящие на конкретный белый адрес и конкретный порт маршрутизатора, должны быть перенаправлены на нужный порт нужного внутреннего адреса.
Router(config)#ip nat inside source static tcp 172.16.0.2 80 198.51.100.2 80 extendable

Применение данной команды означает, что TCP-запрос, пришедший из интернета на адрес 198.51.100.2 по порту 80, будет перенаправлен на внутренний адрес 172.16.0.2 на тот же 80-й порт. Разумеется, вы можете пробрасывать и UDP и делать перенаправление с одного порта на другой. Это, например, может оказаться полезным, если у вас есть два компьютера, к которым нужен доступ по RDP извне. RDP использует порт 3389. Один и тот же порт вы не можете пробросить на разные хосты (при использовании одного внешнего адреса). Поэтому вы можете сделать так:
Router(config)# ip nat inside source static tcp 172.16.6.61 3389 198.51.100.2 3389
Router(config)# ip nat inside source static tcp 172.16.6.66 3389 198.51.100.2 3398

Тогда, чтобы попасть на компьютер 172.16.6.61 вы запускаете RDP-сессию на порт 198.51.100.2:3389, а на 172.16.6.66 - 198.51.100.2:3398. Маршрутизатор сам раскидает всё, куда надо.

Кстати, эта команда - частный случай самой первой: ip nat inside source static 172.16.6.66 198.51.100.2. Только в этом случае речь идёт о пробросе всего трафика, а в наших примерах - конкретных портов протокола TCP.

Вот так в общих чертах фунциклирует NAT. Про его особенности, плюсы/минусы написано куча статей, но не отметить их нельзя.

Слабости и силости NAT

+

- В первую очередь NAT позволяет сэкономить публичные IP-адреса. Собственно для этого он и был создан. Через один адрес, теоретически можно выпустить больше 65000 серых адресов (по количеству портов).
- Во-вторых , PAT и динамический NAT является в какой-то степени файрволом, препятствуя внешним соединениям доходить до конечных компьютеров, на которых может не оказаться своего файрвола и антивируса. Дело в том, что если извне на натирующее устройство приходит пакет, который тут не ожидается или не разрешён, он просто отбрасывается.
Чтобы пакет был пропущен и обработан, должны выполниться следующие условия:
1) В NAT-таблице должна быть запись для этого внешнего адреса, указанного как адрес отправителя в пакете
И
2) Порт отправителя в пакете должен совпадать с портом для этого белого адреса в записи
И
3) Порт назначения в пакете, совпадает с портом в записи.
ИЛИ
Настроен проброс портов.
Но не нужно рассматривать NAT именно как файрвол - это не более, чем дополнительная его плюшка.

- В-третьих , NAT скрывает от посторонних глаз внутреннюю структуру вашей сети - при трассировке маршрута извне вы не увидите ничего далее натирующего устройства.

-

Есть у NAT’а и минусы. Самые ощутимые из них, пожалуй, следующие:
- Некоторые протоколы не могут работать через NAT без костылей. Например, FTP или протоколы туннелирования (несмотря на то, как просто я настроил FTP в лабораторке, в реальной жизни это может создать кучу проблем)
- Другая проблема кроется в том, с одного адреса идёт много запросов на один сервер. Многие были свидетелем этого, когда заходишь на какой-нибудь Rapidshare, а он говорит, что с вашего IP уже было соединение, вы думаете, что “врёт, собака”, а это ваш сосед уже сосет. По этой же причине бывали проблемы c ICQ, когда сервера отказывали в регистрации.
- Не очень актуальная сейчас проблема: нагрузка на процессор и оперативную память. Поскольку объём работы довольно велик по сравнению с простой маршрутизацией (это надо не просто глянуть заголовок IP, надо его снять, TCP-заголовок снять, в таблицу занести, новые заголовки прикрутить) в мелких конторах с этим бывают проблемы.
Я сталкивался с такой ситуацией.
Одно из возможных решений - вынести функцию NAT на отдельный ПК либо на специализированное устройство, например Cisco ASA.
Для больших игроков, у которых маршрутизаторы ворочают по 3-4 BGP full-view, сейчас это не составляет проблем.

Что ещё нужно знать?
- NAT применяется в основном для обеспечения доступа в Интернет хостам с приватными адресами. Но бывает и иное применение - связь между двумя частными сетями с пересекающимися адресными пространствами.
Например, ваша компания покупает себе филиал в Актюбинске. У вас адресация 10.0.0.0-10.1.255.255, а у них 10.1.1.0-10.1.10.255. Диапазоны явно пересекаются, настроить маршрутизацию никак не получится, потому что один и тот же адрес может оказаться и в Актюбинске и у вас в штаб-квартире.
В таком случае на месте стыка настраивается NAT. Поскольку серых адресов у нас не мерено, можно выделить, к примеру, диапазон 10.2.1.0-10.2.10.255 и делать трансляцию один-в-один:
10.1.1.1-10.2.1.1
10.1.1.2-10.2.1.2

10.1.10.255-10.2.10.255

В больших игрушках для взрослых NAT может быть реализован на отдельной плате (и часто так и есть) и без неё не заработает. А на офисных железках, напротив, есть почти всегда.

С повсеместным внедрением IPv6 необходимость в NAT’e будет сходить на нет. Уже сейчас большие заказчики начинают интересоваться функционалом NAT64 - это когда у вас выход в мир через IPv4, а внутренняя сеть уже на IPv6

Разумеется, это лишь поверхностный взгляд на NAT и есть ещё море нюансов, не утонуть в котором вам поможет самообразование.

Практика NAT

Чего от нас требует реальность?
1) Сеть управления не имеет доступа в интернет вообще
2) Хосты из сети ПТО имеют доступ только к профильным сайтам, например, Linkmeup.ru
3) Милым дамам из бухгалтерии нужно вырубить окно в мир клиент-банков.
4) ФЭО не выпускать никуда, за исключением финансового директора
5) В сети Other наш компьютер и компьютер админа - им дадим полный доступ в интернет. Всем остальным можно открывать по письменному запросу.
6) Не забудем про филиалы в Питере и в Кемерово. Для простоты настроим полный доступ для эникиев из этих подсетей.
7) С серверами отдельная песня. Для них мы настроим перенаправление портов. Всё, что нам нужно:
а) WEB-сервер должен быть доступен по 80-му порту
б) Почтовый сервер по 25-му и 110-му
в) Файловый сервер доступен из мира по FTP.
8) Компьютеры админа и наш должны быть доступны из Интернета по RDP. Вообще-то это неправильный путь - для удалённого подключения нужно использовать VPN-подключение и уже будучи в локальной сети использовать RDP, но это тема отдельной совсем другой статьи.

Сначала подготовим тестовую площадку:

Подключение к Интернету будет организовано через существующий линк, который предоставляет провайдер.
Он уходит в сеть провайдера. Напоминаем, что всё в этом облаке - это абстрактная сеть, которая на деле может состоять из десятков маршрутизаторов и сотен коммутаторов. Но нам нужно нечто управляемое и предсказуемое, поэтому водружаем сюда ещё маршрутизатор. С одной стороны в него линк из коммутатора, с другой сервера в Интернете.

Сервера нам понадобятся следующие:
1. Два клиент-банка для бухгалтеров (sperbank.ru, mmm-bank.ru)
2. Linkmeup.ru для ПТОшников
3. яндекс (yandex.ru)

Для такого подключения мы поднимем ещё один влан на msk-arbat-gw1. Его номер, разумеется, согласуется с провайдером. Пусть это будет VLAN 6
Предположим, провайдер предоставляет нам подсеть 198.51.100.0/28 . Первые два адреса используются для организации линка (198.51.100.1 и 198.51.100.2), а оставшиеся мы используем, как пул для NAT’a. Впрочем, никто совершенно нам не мешает использовать и адрес 198.51.100.2 для пула. Так и сделаем: пул: 198.51.100.2-198.51.100.14
Для простоты предположим, что публичные сервера у нас находятся в одной подсети:
192.0.2.0/24 .
Как настроить линк и адреса вы вполне уже в курсе.
Поскольку у нас только один маршрутизатор в сети провайдера, и все сети подключены непосредственно к нему, то необходимости настраивать маршрутизацию нету.
А вот наш msk-arbat-gw1 должен знать куда отправлять пакеты в Интернет, поэтому нам нужен маршрут по умолчанию:

msk-arbat-gw1(config)# ip route 0.0.0.0 0.0.0.0 198.51.100.1

Теперь по порядку

Во первых настроим пул адресов

msk-arbat-gw1(config)# ip nat pool main_pool 198.51.100.2 198.51.100.14 netmask 255.255.255.240

Теперь собираем ACL:
msk-arbat-gw1(config)# ip access-list extended nat-inet

1) Сеть управления

не имеет доступа в интернет вообще
Готово

2) Хосты из сети ПТО

Имеют доступ только к профильным сайтам, например, Linkmeup.ru
msk-arbat-gw1(config-ext-nacl)# permit tcp 172.16.3.0 0.0.0.255 host 192.0.2.2 eq 80

3)Бухгалтерия

Даём доступ всем хостам на оба сервера
msk-arbat-gw1(config-ext-nacl)# permit ip 172.16.5.0 0.0.0.255 host 192.0.2.3
msk-arbat-gw1(config-ext-nacl)# permit ip 172.16.5.0 0.0.0.255 host 192.0.2.4

4) ФЭО

Даём разрешение только финансовому директору - это только один хост.
msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.4.123 any

5) Other

Наши компьютеры с полным доступом
msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.6.61 any
msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.6.66 any

6) Филиалы в Санкт-Петербурге и Кемерово

Пусть адреса эникиев будут одинаковыми: 172.16.х.222
msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.16.222 any
msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.17.222 any
msk-arbat-gw1(config-ext-nacl)# permit ip host 172.16.24.222 any

Вот так выглядит сейчас ACL полностью:
ip access-list extended nat-inet
remark PTO
permit tcp 172.16.3.0 0.0.0.255 host 192.0.2.2 eq www
remark ACCOUNTING
permit ip 172.16.5.0 0.0.0.255 host 192.0.2.3
permit ip 172.16.5.0 0.0.0.255 host 192.0.2.4
remark FEO
permit ip host 172.16.4.123 any
remark IAM
permit ip host 172.16.6.61 any
remark ADMIN
permit ip host 172.16.6.66 any
remark SPB_VSL_ISLAND
permit ip host 172.16.16.222 any
remark SPB_OZERKI
permit ip host 172.16.17.222 any
remark KMR
permit ip host 172.16.24.222 any

Запускаем:

msk-arbat-gw1(config)# ip nat inside source list nat-inet pool main_pool overload

Но счастье не будет полным без настройки интерфейсов:
На внешнем интерфейсе нужно дать команду ip nat outside
На внутреннем: ip nat inside
msk-arbat-gw1(config)# int fa0/0.101
msk-arbat-gw1(config)# int fa0/0.102
msk-arbat-gw1(config-subif)# ip nat inside
msk-arbat-gw1(config)# int fa0/0.103
msk-arbat-gw1(config-subif)# ip nat inside
msk-arbat-gw1(config)# int fa0/0.104
msk-arbat-gw1(config-subif)# ip nat inside

Msk-arbat-gw1(config)# int fa0/1.6
msk-arbat-gw1(config-subif)# ip nat outside

Это позволит маршрутизатору понять откуда ждать пакеты, которые нужно будет обработать и куда их потом слать.

Чтобы сервера в интернете были доступны по доменному имени, нам бы неплохо было обзавестись DNS-сервером в нашей сети:


Естественно его, нужно прописать на тех устройствах, с которых будем проверять доступ:

Show must go on!

С компьютера админа доступно всё:

Из сети ПТО есть доступ только на сайт linkmeup.ru по 80-му порту (HTTP):



В сети ФЭО в мир выходит только 4.123 (финдиректор)



В бухгалтерии работают только сайты клиент-банков. Но, поскольку разрешение дано полностью на протокол IP, то их можно и пинговать:


7) Cервера

Тут нам нужно настроить проброс портов, чтобы к ним можно было обращаться из Интернета:

a) Веб-сервер

msk-arbat-gw1(config)# ip nat inside source static tcp 172.16.0.2 80 198.51.100.2 80

Сразу проверяем, например, мы можем это делать с тестового ПК c аресом 192.0.2.7.
Сейчас ничего не заработает, потому что для сети серверов у нас не настроен интерфейс на msk-arbat-gw1:
msk-arbat-gw1(config)# int fa0/0.3
msk-arbat-gw1(config-subif)# ip nat inside

А теперь:

б) Файловый сервер

msk-arbat-gw1(config)# ip nat inside source static tcp 172.16.0.3 20 198.51.100.3 20
msk-arbat-gw1(config)# ip nat inside source static tcp 172.16.0.3 21 198.51.100.3 21

Вот для этого в ACL Servers-out мы открывали также и 20-21-й порты для всех

в) Почтовый сервер

msk-arbat-gw1(config)# ip nat inside source static tcp 172.16.0.4 25 198.51.100.4 25
msk-arbat-gw1(config)# ip nat inside source static tcp 172.16.0.4 110 198.51.100.4 110

Проверить также не сложно. Следуйте инструкциям:
Сначала настраиваем почтовый сервер. Указываем домен и создаём двух пользователей.

Настраиваем компьютер из нашей сети:

Из внешней:

Готовим письмо:

На локальном хосте нажимаем Receive:

8) Доступ по RDP к компьютерам админа и нашему

msk-arbat-gw1(config)# ip nat inside source static tcp 172.16.6.61 3389 198.51.100.10 3389
msk-arbat-gw1(config)# ip nat inside source static tcp 172.16.6.66 3389 198.51.100.10 3398

Безопасность

На последок одно замечание. Скорее всего натирующее устройство, у вас смотрит своим ip nat outside интерфейсом наружу - в Интернет. Поэтому на этот интерфейс не помешало бы повешать ACL, где вы запретите, разрешите, то что вам нужно. На этом вопросе не будем останавливаться уже в данной статье.

На этом первое знакомство с технологией NAT можно считать законченным.
В качестве ещё одного ДЗ ответьте на вопрос, почему нет доступа в Интернет с компьютеров эникиев в Питере и в Кемерово. Ведь мы их добавили уже в список доступа.

Трансляция сетевых адресов (NAT) является способом переназначения одного адресного пространства в другое путем изменения информации То есть заголовки пакетов изменяются в то время, когда они находятся в пути через устройство маршрутизации трафика. Этот метод первоначально использовался для простоты перенаправления трафика в IP-сетях без перенумерации каждого хоста. Он стал популярным и важным инструментом для сохранения и распределения глобального адресного пространства в условиях недостатка адресов IPv4.

NAT - это что такое?

Оригинальное использование трансляции сетевых адресов состоит в отображении каждого адреса из одного адресного пространства к соответствующему адресу в другом пространстве. Например, это необходимо, если провайдер интернет-услуг изменился, а пользователь не имеет возможности публично объявить новый маршрут к сети. В условиях обозримого глобального истощения IP-адресного пространства технология NAT все чаще используется с конца 1990-х годов в сочетании с IP-шифрованием (которое представляет собой метод перехода нескольких IP-адресов в одно пространство). Этот механизм реализован в устройстве маршрутизации, которое использует таблицы перевода с сохранением состояния для отображения «скрытых» адресов в один IP-адрес, и перенаправляет исходящие IP-пакеты на выходе. Таким образом, они отображаются выходящими из устройства маршрутизации. В обратном ответы отображаются в исходном IP-адресе с помощью правил, хранящихся в таблицах перевода. Правила таблицы перевода, в свою очередь, очищаются по истечении короткого периода, если новый трафик не обновляет свое состояние. Таков основной механизм NAT. Это что означает?

Данный метод позволяет осуществлять связь через маршрутизатор только тогда, когда соединение происходит в зашифрованной сети, так как это создает таблицы перевода. Например, веб-браузер внутри такой сети может просматривать сайт за ее пределами, но, будучи установленным вне ее, он не может открыть ресурс, размещенный в ней. Тем не менее большинство устройств NAT сегодня позволяют конфигурировать записи таблицы перевода для постоянного использования. Эта функция часто упоминается как статическая NAT или перенаправление портов, и она позволяет трафику, исходящему во «внешнюю» сеть, достичь назначенных хостов в зашифрованной сети.

Из-за популярности этого метода, используемого с целью сохранения адресного пространства IPv4, термин NAT (это что такое фактически - указано выше) стал практически синонимом метода шифрования.

Поскольку трансляция сетевых адресов изменяет информацию об адресе IP-пакетов, это имеет серьезные последствия для качества подключения к интернету и требует пристального внимания к деталям его реализации.

Способы применения NAT отличаются друг от друга в их конкретном поведении в различных случаях, касающихся влияния на сетевой трафик.

Базовая NAT

Простейший тип Network Address Translation (NAT) обеспечивает трансляцию IP-адресов «один-к-одному». RFC 2663 является основным типом данной трансляции. В этом типе изменяются только IP-адреса и контрольная сумма IP-заголовков. Основные типы трансляции можно использовать для соединения двух IP-сетей, которые имеют несовместимую адресацию.

NAT - это что в подключении «один-ко-многим»?

Большинство разновидностей NAT способны сопоставить несколько частных хостов к одному публично обозначенному IP-адресу. В типичной конфигурации локальная сеть использует один из назначенных «частных» IP-адресов подсети (RFC 1918). Маршрутизатор в этой сети имеет частный адрес в этом пространстве.

Маршрутизатор также подключается к интернету с помощью «публичного» адреса, присвоенного провайдером. Так как трафик проходит из локальной сети источника в каждом пакете переводится на лету из частного адреса в публичный. Маршрутизатор отслеживает основные данные о каждом активном соединении (в частности, адрес и порт назначения). Когда ответ возвращается к нему, он использует данные соединения, которые сохраняются во время выездного этапа, чтобы определить частный адрес внутренней сети, к которому следует направить ответ.

Одним из преимуществ этого функционала является то, что он служит практическим решением надвигающегося исчерпания адресного пространства IPv4. Даже крупные сети могут быть подключены к Интернету с помощью одного IP-адреса.

Все дейтаграммы пакетов на IP-сетях имеют 2 IP-адреса - исходный и пункта назначения. Как правило, пакеты, проходящие из частной сети к сети общего пользования, будут иметь адрес источника пакетов, изменяющийся во время перехода от публичной сети обратно к частной. Более сложные конфигурации также возможны.

Особенности

Настройка NAT может иметь некоторые особенности. Во избежание трудностей в том, как перевести возвращенные пакеты, требуются их дальнейшие модификации. Подавляющее большинство интернет-трафика идет через протоколы TCP и UDP, и их номера портов изменяются таким образом, что сочетание IP-адреса и номера порта при обратном направлении данных начинает сопоставляться.

Протоколы, не основанные на TCP и UDP, требуют других методов перевода. Протокол управления сообщениями в (ICMP), как правило, соотносит передаваемые данные с существующим соединением. Это означает, что они должны быть отображены с использованием того же IP-адреса и номера, установленного изначально.

Что нужно учитывать?

Настройка NAT в роутере не дает ему возможности соединения «из конца в конец». Поэтому такие маршрутизаторы не могут участвовать в некоторых интернет-протоколах. Услуги, которые требуют инициации TCP-соединений от внешней сети или пользователей без протоколов, могут быть недоступны. Если маршрутизатор NAT не делает особых усилий для поддержки таких протоколов, входящие пакеты не могут добраться до места назначения. Некоторые протоколы могут разместиться в одной трансляции между участвующими хостами («пассивный режим» FTP, например), иногда с помощью шлюза прикладного уровня, но соединение не будет установлено, когда обе системы отделены от сети Интернет с помощью NAT. Использование трансляции сетевых адресов также усложняет такие «туннельные» протоколы, как IPsec, поскольку она изменяет значения в заголовках, которые взаимодействуют с проверками целостности запросов.

Существующая проблема

Соединение «из конца в конец» является основным принципом интернета, существующим с момента его разработки. Текущее состояние сети показывает, что NAT является нарушением этого принципа. У специалистов существует серьезная озабоченность в связи с повсеместным использованием в IPv6-трансляции сетевых адресов, и поднимается проблема о том, как эффективно ее устранить.

Из-за недолговечной природы таблиц, сохраняющих состояние трансляции в маршрутизаторах NAT, устройства внутренней сети утрачивают IP-соединение, как правило, в течение очень короткого периода времени. Говоря о том, что такое NAT в роутере, нельзя забывать про это обстоятельство. Это серьезно сокращает время работы компактных устройств, работающих на батарейках и аккумуляторах.

Масштабируемость

Кроме того, при использовании NAT отслеживаются только порты, которые могут быть быстро истощены внутренними приложениями, использующими несколько одновременных соединений (например, HTTP-запросы для веб-страниц с большим количеством встроенных объектов). Эта проблема может быть смягчена путем отслеживания IP-адреса назначения в дополнение к порту (таким образом, один локальный порт разделяется большим количеством удаленных хостов).

Некоторые сложности

Поскольку все внутренние адреса маскируются под один общедоступный, для внешних хостов становится невозможно инициировать подключение к определенному внутреннему узлу без специальной конфигурации на брандмауэре (которая должна перенаправлять подключения к определенному порту). Такие приложения, как IP-телефония, видеоконференции и подобные сервисы должны использовать методы обхода NAT, чтобы нормально функционировать.

Обратный адрес и порт перевода (Rapt) позволяет хосту, реальный IP-адрес которого меняется время от времени, оставаться доступным в качестве сервера с помощью фиксированного IP-адреса домашней сети. В принципе, это должно позволить настройке серверов сохранять соединение. Несмотря на то что это не идеальное решение проблемы, это может стать еще одним полезным инструментом в арсенале сетевого администратора при решении задачи, как настроить NAT на роутере.

Port Address Translation (PAT)

Реализацией Cisco Rapt является Port Address Translation (PAT), который отображает несколько частных IP-адресов в виде одного публичного. Несколько адресов могут быть отображены как адрес, потому что каждый из них отслеживается с помощью номера порта. PAT использует уникальные номера портов источника на внутреннем глобальном IP, чтобы различать направление передачи данных. Такими номерами являются 16-разрядные целые числа. Общее количество внутренних адресов, которые могут быть переведены на один внешний, теоретически может достигать 65536. Реальное же количество портов, на которые может быть назначен единый IP-адрес, составляет около 4000. Как правило, PAT пытается сохранить исходный порт «оригинала». Если он уже используется, Port Address Translation назначает первый доступный номер порта, начиная с начала соответствующей группы - 0-511, 512-1023 или 1024-65535. Когда больше нет доступных портов и есть более чем один внешний IP-адрес, PAT переходит к следующему, чтобы попытаться выделить исходный порт. Этот процесс продолжается до тех пор, пока не закончатся доступные данные.

Отображение адреса и порта осуществляется службой Cisco, которая сочетает в себе адрес порта перевода с данными туннелирования пакетов IPv4 по внутренней сети IPv6. По сути дела, это неофициальная альтернатива CarrierGrade NAT и DS-Lite, которая поддерживает IP-трансляции адресов/портов (и, следовательно, поддерживается настройка NAT). Таким образом, это позволяет избежать проблем в установке и поддержании соединения, а также обеспечивает механизм перехода для развертывания IPv6.

Методы перевода

Существует несколько способов реализации перевода сетевого адреса и порта. В некоторых прикладных протоколах, которые используют приложения по работе с IP-адресами, работающими в зашифрованной сети, необходимо определить внешний адрес NAT (который используется на другом конце соединения), и, кроме того, зачастую необходимо изучить и классифицировать тип передачи. Обычно это делается потому, что желательно создать прямой канал связи (либо сохранить бесперебойную передачу данных через сервер, или же для повышения производительности) между двумя клиентами, оба из которых находятся за отдельными NAT.

Для этой цели (как настроить NAT) в 2003 году был разработан специальный протокол RFC 3489, обеспечивающий простой обход UDP через NATS. На сегодняшний день он является устаревшим, поскольку такие методы в наши дни являются недостаточными для правильной оценки работы многих устройств. Новые методы были стандартизованы в протоколе RFC 5389, который был разработан в октябре 2008 года. Эта спецификация сегодня носит название SessionTraversal и представляет собой утилиту для работы NAT.

Создание двусторонней связи

Каждый пакет TCP и UDP содержит IP-адрес источника и номер его порта, а также координаты порта назначения.

Для получения таких общедоступных услуг, как функционал почтовых серверов, номер порта имеет важное значение. Например, подключается к программному обеспечению веб-сервера, а 25 - к SMTP почтового сервера. IP-адрес общедоступного сервера также имеет существенное значение, подобное почтовому адресу или номеру телефона. Оба этих параметра должны быть достоверно известны всем узлам, которые намерены установить соединение.

Частные IP-адреса имеют значение только в локальных сетях, где они используются, а также для хост-портов. Порты являются уникальными конечными точками связи на хосте, поэтому соединение через NAT поддерживается с помощью комбинированного картирования порта и IP-адреса.

РАТ (Port AddressTranslation) разрешает конфликты, которые могут возникнуть между двумя различными хостами, использующими один и тот же номер порта источника для установления уникальных подключений одновременно.

Компьютер подключается к глобальной сети несколькими способами. Это может быть прямое подключение, в этом случае имеется внешний IP адрес (динамический или статический), который виден из интернета. Или же подключение может осуществляться через маршрутизатор. При таком подключении внешний адрес имеет только роутер, а все подключенные к нему пользователи являются клиентами другой сети. Роутер берет на себя распределение входящего и исходящего трафика между клиентами и интернетом. Возникает ряд проблем при подключении через маршрутизатор:

  • перестают работать торрент-клиенты;
  • нет возможности подключиться к игровому онлайн серверу;
  • нет обращений к серверу внутренней сети из вне ни по одному протоколу и ни на один порт.

Решить проблему помогает правильная настройка маршрутизатора, а именно сервиса NAT на нем. Для того, чтобы понять, как настроить NAT на роутере , необходимом узнать, что такое трансляция адресов и для чего это используется.

NAT: общие определения

NAT (network address translation) или трансляция сетевых адресов - это процесс перевода внутренних или локальных адресов во внешние. NAT используется абсолютно всеми маршрутизаторами независимо от их конфигурации, назначения и стоимости. По умолчанию роутер запрещает напрямую обращаться к любому устройству, находящимися внутри сети. Он блокирует доступ на любые порты для входящих соединений поступающие из интернета.

Но NAT и Firewall это суть разные понятия. Firewall просто запрещает доступ к ресурсу по определенному TCP или UDP порту, может устанавливаться на локальной машине для ограничения доступа только к ней или же на сервере для фильтрации трафика по всей локальной сети. Перед NAT задача стоит более развернуто. Сервис запрещает или разрешает доступ внутри сети по конкретному IP адресу или диапазону адресов. Таким образом клиент, который обращается к ресурсу не видит действительного IP адреса ресурса. NAT переводит внутренний IP в адрес, который будет виден из интернета.

Чтобы проверить находится ли компьютер за NAT или транслирует в интернет реальный адрес можно следующим образом:

  • в Windows нужно нажать «Пуск - Выполнить - cmd» и прописать ipconfig и нажать «Ввод»;
  • в Linux и MacOS в терминале выполняется ifconfig .

Вывод команды показывает следующие данные:

  • IP - реальный, действительный адрес компьютера;
  • Subnet mask - маска подсети;
  • Gateway - адрес шлюза маршрутизатора.

Как теперь разобрать является ли адрес локальным или же напрямую «смотрит» в интернет. Согласно спецификации, существует четыре диапазона адресов, которые ни при каких обстоятельствах не используются в интернете, а являются исключительно локальными:

  1. 0.0.0 - 10.255.255.255
  2. Х.0.0 - 172.Х.255.255, где Х в диапазоне от 16 до 31.
  3. 168.0.0 - 192.168.255.255
  4. 254.0.0 - 169.254.255.255

В том случае, когда адрес машины попадает в один из этих диапазонов, следует считать, что компьютер находится в локальной сети или «за» NAT. Можно также дополнительно использовать специальные службы, которых есть множество в интернете для определения реального IP адреса. Теперь стало понятнее находится ли компьютер за NAT в роутере что это за сервис, и за то он отвечает.

Проблемы NAT и возможности решения

С момента появления NAT сразу же стали проявляться проблемы. Невозможно было получить доступ по отдельному протоколу или в работе отдельных программ. Данные проблемы так и не удалось полностью устранить, получилось только найти некоторые варианты решения только с использованием трансляции адресов, но ни один вариант решения не является правильным с точки зрения спецификаций администрирования.

В качестве примера можно рассмотреть протокол передачи файлов (FTP), который был саммым распространенным к появлению NAT. Для файловых серверов (FTP) ключевым является реальный IP адрес компьютера, который посылает запрос на доступ. Здесь преобразование адресов не работает, потому что запрос на сервер отправляется с IP, невидимого из интернета. Нет возможности создать сессию клиент-сервер для загрузки файлов. Обойти проблему помогает использование FTP в пассивном режиме. В этом режиме используется другой набор команд, и работа ведется через специальный прокси-сервер, который дополнительно открывает другой порт для соединения и передает его программе клиенту. Проблемой такого решения является то, что необходимо использовать сторонние FTP клиенты.

Полностью избавиться от проблемы доступа получилось только с появлением SOCKS (Socket Secure) протокола. Этот протокол позволяет обмениваться данными через прокси-сервер в «прозрачном» режиме. То есть сервер не будет знать, что происходит подмена адресов с локальных на глобальные и наоборот. Изобретение SOCKS позволило избавиться от ряда проблем и упростить работу администрирования сети:

  • создает на сервере службу, слушающую входящие запросы, что позволяет обслуживать многосвязные протоколы наподобие FTP;
  • нет необходимости использовать и обслуживать службу DNS внутри локальной сети. Теперь такая задача возложена на кэширующие прокси;
  • дополнительные способы авторизации позволяют с большей эффективностью проводить отслеживание и фильтрацию пакетов. Средствами NAT можно фильтровать запросы только по адресам.

Использование NAT и SOCKS не всегда оправдано с точки зрения сетевого администрирования. Иногда более целесообразным является использование специализированных прокси, которых существуете множество для любого протокола передачи данных.

Настройка NAT на компьютере

Все современные операционные системы имеют уже встроенный NAT. В Windows эта функция реализована с 1999 года с появлением Windows XP. Управление NAT осуществляется непосредственно через свойства сетевого подключения. Чтобы настроить службу нужно сделать следующее:

  • Через меню «Пуск» запустить программу «Панель управления».
  • Найти иконку «Сетевые подключения» и запустить ее.
  • В новом окне кликнуть правой кнопкой мыши на активном сетевом подключении и выбрать в выпадающем списке «Свойства».
  • Перейти на вкладку «Дополнительно».
  • Установить галочки напротив «Разрешить другим пользователям сети использовать подключение к интернету данного компьютера».
  • Подтвердить изменение кнопкой «Ок».

Если при выведется сообщение что невозможно запустить службу общего доступа, нужно убедиться, что запущена служба DHCP-клиент. При необходимости можно установить запуск службы принудительно, а не по запросу автоматически.

Настройка NAT на маршрутизаторе

Что такое NAT в роутере , целесообразность его использования и проблемы, которые он может создать было описано выше, теперь можно перейти непосредственно к реализации задачи. Настройка службы на роутере зависит от его модели, используемой прошивки и других параметров. Но достаточно понять механизм, чтобы не возникало сложностей и вопросов по настройке отдельного устройства. Для настройки выполняются следующие действия (в качестве примера настройки выполняются на роутере Zyxel на прошивке v1):

  • В браузере зайти на страницу настроек роутера.
  • Перейти в меню «Network — Routing» на вкладку «Policy routing».

Открывшаяся страница и будет той, которая управляет политиками доступа и маршрутизацией. Здесь необходимо включить службу, активировав переключатель в положение «Enable». Сами настройки выполняются в группе «Criteria». Выбираются параметры NAT по нескольким категориям фильтров:

  • User - трансляция по определенному пользователю.
  • Incoming - по сетевому интерфейсу.
  • Source Address - подмена адреса по адресу источника.
  • Destination Address - по адресу конечного получателя
  • Service - по конкретному порту службы.

В качестве объекта перенаправления можно выбрать следующие варианты:

  • Auto - автоматический выбор объекта назначения. По умолчанию установлен Wan интерфейс.
  • Gateway - шлюз, указанный заранее в настройках.
  • VPN Tunel - соответственно через VPN туннель.
  • Trunk - диапазон интерфейсов, настроенных на совместную работу.
  • Interface - конкретный интерфейс по выбору.

В каждом отдельно взятом роутере настройки и название пунктов меню может отличаться, но принцип построения NAT остается неизменным.