Снятие характеристик электронных приборов и устройств. Режимы, характеристики и параметры электронных приборов

Электронные прибор, составляющие основу электроники, можно классифицировать по двум признакам:

По принципу работы;

По функциональному назначению.

По принципу работы электронные приборы могут быть разделены на четыре класса:

1. Электронные приборы – поток электронов движется между электродами, находящимися в высоком вакууме, т.е. в среде столь разряженного газа, что движущиеся электроны не испытывают столкновений с частицами газа.

2. Газоразрядные приборы – движение электронов в межэлектродном пространстве происходит в условиях столкновения их с частицами газа (с молекулами и атомами), что при определенных условиях приводит к ионизации газа, резко изменяющего свойства прибора. Такие приборы называются ионными .

3. Электрохимические приборы – принцип действия основан на явлениях, связанных с происхождением электрического тока в жидких телах с ионной проводимостью. Такие приборы работают на основе явлений, изучаемых электрохимией и электроникой – хемотроникой .

4. Полупроводниковые приборы – принцип действия основан на электронных явлениях в веществах, имеющих кристаллическое строение, для которого характерно закономерное и упорядоченное расположение атомов в пространстве. Связанные между собой атомы располагаются строго определенным способом, что образует кристаллическую решетку твердого тела.

По функциональному назначению электронные приборы могут быть разделены на три группы:

1. Электропреобразовательные – это приборы, в которых электрическая энергия одного вида (например, постоянного тока) преобразуется в электрическую энергию другого вида (например, переменного тока различной формы). К ним относятся выпрямительные, усилительные, переключающие, стабилизирующие приборы и т.п.

2. Электроосветительные – это приборы, в которых электрическая энергия преобразуется в энергию оптического излучения. К ним можно отвести электронно-световые индикаторы, ЭЛТ, знаковые индикаторы, лазеры, в т.ч. светоизлучающие диоды и т.д.

3. Фотоэлектрические – это приборы, в которых энергия светового излучения преобразуется в электрическую энергию. Это фотоэлементы, фотодиоды, фототранзисторы, видеокамеры и т.п.

Общим для всех электронных приборов является то, что в них осуществляется преобразование энергий различных видов, поэтому приборы, имеющие существенные отличия в принципе действия , применяются по одному и тому же функциональному назначению, т.е. для одной и той же цели и обладают близкими свойствами.

Электроника.

Лекционный курс.

Введение.

Темпы развития многих областей науки и техники в значительной степени связаны с развитием электроники. В настоящее время невозможно найти какую-либо отрасль промышленности, в которой не использовались бы электронные приборы или электронные устройства автоматики, вычислительной или измерительной техники.

В каждой из многочисленных отраслей современной техники электроника дает толчок качественно новому этапу развития, производит подлинную техническую революцию.

Электроника как наука (принято называть физической электроникой ) занимается изучением электронных явлений и процессов, связанных с изменением концентрации и перемещением заряженных частиц в различных средах (в вакууме, газах, жидкостях, твердых телах) под воздействием различных условий (температура, давление, электрические и магнитные поля, излучения различного вида, в т. ч. и световые).

Задача электроники как отрасли техники (техническая электроника ) – разработка, производство и эксплуатация электронных приборов, устройств и систем самого различного назначения.

Эффективность электронной техники обусловлена высоким быстродействием, точностью и чувствительностью входящих в нее элементов, важнейшими из которых являются электронные приборы.

С помощью электронных приборов удается преобразовывать неэлектрические виды энергий в электрическую и наоборот.

Исключительно велика роль электроники при создании средств вычислительной техники, в том числе высоко-эффективных электронных вычислительных машин (ЭВМ) и персональных компьютеров (ПК).

Классификация электронных приборов.

Электронные прибор, составляющие основу электроники, можно классифицировать по двум признакам:

По принципу работы;

По функциональному назначению.

По принципу работы электронные приборы могут быть разделены на четыре класса:

1. Электронные приборы – поток электронов движется между электродами, находящимися в высоком вакууме, т.е. в среде столь разряженного газа, что движущиеся электроны не испытывают столкновений с частицами газа.

2. Газоразрядные приборы – движение электронов в межэлектродном пространстве происходит в условиях столкновения их с частицами газа (с молекулами и атомами), что при определенных условиях приводит к ионизации газа, резко изменяющего свойства прибора. Такие приборы называются ионными .

3. Электрохимические приборы – принцип действия основан на явлениях, связанных с происхождением электрического тока в жидких телах с ионной проводимостью. Такие приборы работают на основе явлений, изучаемых электрохимией и электроникой – хемотроникой .

4. Полупроводниковые приборы – принцип действия основан на электронных явлениях в веществах, имеющих кристаллическое строение, для которого характерно закономерное и упорядоченное расположение атомов в пространстве. Связанные между собой атомы располагаются строго определенным способом, что образует кристаллическую решетку твердого тела.

По функциональному назначению электронные приборы могут быть разделены на три группы:

1. Электропреобразовательные – это приборы, в которых электрическая энергия одного вида (например, постоянного тока) преобразуется в электрическую энергию другого вида (например, переменного тока различной формы). К ним относятся выпрямительные, усилительные, переключающие, стабилизирующие приборы и т.п.

2. Электроосветительные – это приборы, в которых электрическая энергия преобразуется в энергию оптического излучения. К ним можно отвести электронно-световые индикаторы, ЭЛТ, знаковые индикаторы, лазеры, в т.ч. светоизлучающие диоды и т.д.

ОБЩИЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОННЫХ ПРИБОРАХ

Классификация

Электронным прибором (ЭП) называют устройство, в котором в результате взаимодействия свободных или связанных носителей заряда с электрическим, магнитным и переменным электромагнит­ным полем обеспечивается преобразование информационного сиг­нала или преобразование вида энергии.

Основными признаками классификации разнообразных по прин­ципу действия, назначению, технологии изготовления, свойствам и параметрам можно считать: вид преобразования сигнала; вид рабо­чей среды и тип носителей заряда; структуру (устройство) и число электродов; способ управления.

По виду преобразования сигнала все ЭП можно разбить на две большие группы. К первой группе относятся ЭП, в которых использу­ется преобразование одного вида энергии в другой. В эту группу вхо­дят электросветовые ЭП (преобразование типа электрический сигнал в световой), фотоэлектронные приборы (световой сигнал в электрический), электромеханические (электрический сигнал в ме­ханический), механоэлектрические ЭП (механический сигнал в элек­трический), оптопары (электрический сигнал в световой и затем сно­ва в электрический)и др.

Ко второй группе обычно относятся электропреобразователь­ные приборы, в которых изменяются параметры электрического сиг­нала (например, амплитуда, фаза, частота и др.).

По виду рабочей среды и типу носителей заряда различают сле­дующие классы электронных приборов: электровакуумные (вакуум, электроны), газоразрядные (разреженный газ, электроны и ионы), полупроводниковые (полупроводник, электроны и дырки), хемотронные (жидкость, ионы и электроны).

Электроды электронного прибора – это элементы его конструк­ции, которые служат для формирования рабочего пространства при­бора и связи его с внешними цепями. Число электродов и их потенциалы определяют физические процессы в приборе. Наиболее на­глядно это в электронных лампах: двухэлектродные (диоды), трех­электродные (триоды), четырехэлектродные (тетроды) и пятиэлект­родные (пентоды).

Режимы, характеристики и параметры электронных приборов

Совокупность условий, определяющих состояние или работу электронного прибора, принято называть режимом электронного прибора, а любую величину, характеризующую этот режим (к приме­ру, ток или напряжение), – параметрами режима. Говорят об усилительных, импульсных, частотных, шумо­вых, температурных и механических свойствах, о надежности и т.п. Количественные сведения об этих свойствах называют параметра­ми прибора . К ним, например, относят коэффициенты передачи токов, характеристические частоты, коэффициент шума, интенсивность отказов, ударную стойкость и др.

Вначале остановимся на понятиях статического и динамическо­го режимов приборов. Статическим называют режим, когда прибор работает при постоянных («статических») напряжениях на электро­дах. В этом режиме токи в цепях электродов не изменяются во вре­мени и распределения зарядов и токов в приборе также постоянны во времени. Другими словами, в статическом режиме все парамет­ры режима не изменяются во времени. Однако, если хотя бы один из параметров режима, например напряжение на каком-то электроде, изменяется во времени, режим называется динамическим.

В динамическом режиме поведение при­бора существенно зависит от скорости или частоты изменения воз­действия (например, напряжения).

У большинства приборов эта зависимость объясняется инерци­онностью физических процессов в приборе, например конечным временем пролета носителей заряда через рабочее пространство или конечным временем жизни носителей. Конечность времени пролета приводит к тому, что мгновенное значение тока электрода, к которому движутся носители, в выбранный момент времени бу­дет определяться не только значением напряжения на электроде в этот момент, но, естественно, и предысторией, т.е. всеми значени­ями напряжения от момента начала движения в приборе до прихо­да носителя заряда к рассматриваемому электроду. Следователь­но, связь мгновенных значений тока и напряжения в динамическом режиме должна отличаться от связи постоянных значений тока и напряжения в статическом режиме. Однако если время пролета значительно меньше периода изменения переменного напряже­ния, то это.отличие во взаимосвязи будет несущественным, т.е. связь мгновенных значений будет практически такой же, как посто­янных величин в статическом режиме. Указанная разновидность динамического режима называется квазистатическим режимом («квази» – означает «как бы» или «как будто»).

Вот ты на радостях идешь к чайнику с мыслью хлопнуть кружку чая с баранкой в честь только что собранного устройства, но оно вдруг перестало работать. При этом видимых причин нет: конденсаторы целы, транзисторы вроде бы не дымятся, диоды тоже. Но при этом устройство не работает. Как быть? Можно воспользоваться вот таким простым алгоритмом поиска неисправности:

Монтажные "сопли"

"Сопли" -- это небольшие капли припоя, которые создают короткое замыкание между двумя разными дорожками на печатной плате. Во время домашней сборки такие неприятные капли припоя приводят к тому, что устройство либо просто не запускается, либо работает неправильно, либо, что хуже всего, после включения тут же сгорают дорогие детали.

Чтобы не допускать таких неприятных последствий перед включением собранного прибора следует внимательно проверить печатную плату на наличие замыканий между дорожками.

Приборы для диагностики устройств

Минимальный набор приборов для наладки и ремонта радиолюбительских конструкций состоит из , мультиметра и . В некоторых случаях можно обойтись только мультиметром. Но для более удобной отладки устройств желательно все же иметь осциллограф .

Для простых устройств такого набора хватает за глаза. Что касается, к примеру, отладки различных усилителей, то для их правильной настройки желательно иметь ещё и генератор сигналов .

Правильное питание -- залог успеха

Прежде, чем делать какие-либо выводы и работоспособности деталей, входящих в твою радиолюбительскую конструкцию, следует проверить правильное ли питание подаётся. Иной раз окажется, что проблема была в неверном питании. Если начинать проверку устройства с его питания, то можно сэкономить много времени на отладке, если причина была в нём.

Проверка диодов

Если в схеме есть диоды, то их следует один за одним внимательно проверить. Если они внешне целые, то следует выпаять один вывод диода и проверить его с помощью мультиметра, включенного в режим измерения сопротивления. При этом если полярность клем мультиметра совпадает с полярностью выводов диода (+ клемма к аноду, а - клемма к катоду), то мультиметр покажет приблизительно 500-600 Ом, а в обратном включении (- клемма к аноду, а + клемма к катоду) не покажет вообще ничего, будто там обрыв. Если же мультиметр показывает что-либо другое, то скорее всего диод вышел из строя и негоден.

Проверка конденсаторов и резисторов

Сгоревшие резисторы видно сразу -- они чернеют. Поэтому найти сгоревший резистор достаточно легко. Что касается кондесаторов, то их проверка сложней. Во-первых, как и в случае с резисторами, надо првоести их осмотр. Если они внешне не вызывают подозрений, тогда ихследует выпаять и проверить с помощью LRC-метра. Обычно выходят из строя электролитические конденсаторы. При этом они раздуваются, когда сгорают. Другая причина их выхода из строя -- время. Поэтому в старых приборах часто заменяют все электролитические конденсаторы.

Проверка транзисторов

Транзисторы проверяются аналогично диодам. Сначала проводится внешний осмотр и если он не вызывает подозрений, то транзистор проверяется с помощью мультиметра. Только клемы мультиметра включаются поочерёдно между базой-коллектором, базой-эммитером и коллектором-эммитером. Кстати, у транзисторов бывает интересная неисправность. При проверке транзистор в норме, но когда включается в схему и на неё подается питание, то через некоторое время схема перестает работать. Оказывается, что транзистор нагрелся и в нагретом состоянии ведёт себя как поломанный. Такой транзистор следует заменить.

Особенности ремонта электронных приборов


Характерной особенностью электронных приборов автомобилей является то, что все они рассчитаны на управление и коммутацию значительных мощностей. Поэтому они содержат мощные полупроводниковые элементы, устанавливаемые на теплоотводах, и маломощные, выполненные печатным способом. Эти особенности требуют соблюдения определенных правил при их ремонте.

Правила установки и крепления полупроводниковых приборов. Крепление полупроводниковых приборов не должно нарушать герметичность корпуса прибора. Особенно осторожно надо обращаться со стеклянными изоляторами выводов. Изгиб выводов должен производиться. так, чтобы не допускать их деформации и образования трещин в изоляторах. Выводы изгибают на расстоянии не менее 10 мм от корпуса, (если нет других указаний).

Мощные транзисторы и диоды крепят с использованием всех точек и средств крепления, предусмотренных ТУ (болты крепления, специальные фланцы). Запрещается изгибать жесткие выводы у мощных полупроводниковых приборов, так как это неизбежно приводит к появлению трещин в стеклянных изоляторах.

Необходимо предусмотреть надежный тепловой контакт корпуса полупроводникового прибора с. теплоот-водом, а также свободную конвекцию окружающего воздуха, не допускать механических резонансов в диапазоне частот, предусмотренных в ТУ на приборы.

Способы присоединения выводов полупроводниковых приборов в схеме. Большинство полупроводниковых приборов рассчитано на применение паяных соединений выводов с элементами схем.

Как правило, вывод паяют на расстоянии 10 мм от корпуса (если в ТУ не оговорено иное). Важно, чтобы при пайке осуществлялся постоянный теплоотвод между корпусом полупроводникового прибора и местом пайки. Обычно температура не должна превышать 260 °С (например, припой ПОС -40). Необходимо чтобы паяльник не перегревался, его температура поддерживалась на заданном уровне и могла контролироваться. Корпус паяльника должен быть заземлен. Время пайки должно быть минимальным. Необходимо также защищать корпус и изоляторы выводов полупроводниковых приборов от попадания на них паров и брызг паяльного флюса> ,

Установлено, что возможны повреждения полупроводниковых приборов при разрядах, вызванных алектро-лизациёй изолированных предметов (в том числе тела человека). Работая с аппаратурой, необходимо защищать полупроводниковые приборы от электрических разрядов, заземляя изолированные тела.

Выводы базы транзисторов необходимо присоединять в схему первыми.и отключать последними. Запрещается подавать напряжение на транзистор, база которого отключена.

Присоединение выводов полупроводниковых приборов методом точечной электросварки допускается лишь в случае, когда это допускается ТУ.

Контроль и замена полупроводниковых приборов в схеме. Опыт показывает, что большая часть повреждений полупроводниковых приборов происходит при их проверках, наладке и контроле схем.

Наконечники проводов измерительных приборов должны иметь конструкцию, исключающую возможность случайных замыканий цепей в схемах.

При настройке не следует подавать сигналы между выводами транзисторов и диодов от генераторов с малым внутренним сопротивлением, так как при этом че_-рез приборы могут протекать большие токи, превышающие предельно допустимые.

Недопустима проверка схем на полупроводниковых приборах малой мощности с помощью омметров или Других приборов, создающих токи в измерительной цени, так как при этом возможны повреждения транзитов и диодов, очень чувствительных к перегрузкам.

Транзисторы, диоды и другие полупроводниковые приборы при ремонте заменяют только при выключенных источниках питания.

Необходимо фиксировать результаты проверок исправности и замеров параметров выключенных из схемы приборов.

Ремонт печатных плат. Платы печатного монтажа изготовляют из листового фольгирова’нного гетинакса или текстолита методом химического травления. Со стороны печатного монтажа плата покрывается теплоизоляционной маской по всей поверхности за исключением- мест, предназначенных для пайки схемы. На поверхности печатных плат не должно быть следов химических реактивов и других загрязнений, непротравленных участков меди на пробельных местах, сколов и вмятин, а также расслоения материала рснования в местах механической обработки. Печатные проводники на платах должны быть четкими, с ровными краями, без разрывов, отслоений и протравленных участков. Неровности по кромкам печатных проводников допустимы только в тех местах, где они не уменьшают допустимое расстояние между двумя соседними проводниками.

Перечисленные выше требования к печатным платам определяют условия, которые необходимо выполнять при ремонте схем и замене элементов.

Тем, кто не знаком с печатным монтажом, рекомендуется вышедшую из строя деталь печатной платы выкусывать так, чтобы в плате остались проводники длиной 10-15 мм, к которым и следует припаивать новую деталь. Тем же, кто имеет практические навыки работы с печатной платой, можно рекомендовать другой способ. Вышедшую из строя деталь следует выкусить из платы, остатки ее выпаять и удалить из отверстия платы со стороны печатного слоя. Новую деталь нужно установить на место старой, а ее концы откусить, загнуть и припаять.