Как работает процессор для чайников. Что нужно знать о центральном процессоре компьютера

Вы используете компьютер или мобильное устройство, чтобы читать данный топик в настоящее время. Компьютер или мобильное устройство для выполнения этих действий использует микропроцессор. Микропроцессор является сердцем любого устройства, сервера или ноутбука. Существует много марок микропроцессоров от самых разных производителей, но все они делают примерно то же самое и примерно таким же образом.
Микропроцессор - также известный как процессор или центральный блок обработки - это вычислительный двигатель, который изготовлен на одном кристалле. Первым микропроцессором был Intel 4004, он появился в 1971 году и был не столь мощным. Он мог складывать и вычитать, и это только 4 бита за один раз. Удивительным процессор был потому, что был выполнен на одном чипе. Вы спросите почему? А я отвечу: инженеры в то время производили процессоры либо из нескольких чипов или из дискретных компонентов (транзисторы использовались в отдельных корпусах).

Если вы когда-либо задавались вопросом, что микропроцессор делает в компьютере, как внешне выглядит или каковы его различия по сравнению с другими типами микропроцессоров, то ступайте под кат - там всё самое интересное, и подробности.

Прогресс в производстве микропроцессоров: Intel

Первым микропроцессором, ставшим впоследствии сердцем простого домашнего компьютера, был Intel 8080 - полный 8-разрядный компьютер на одном чипе, появившийся в 1974 году. Первый микропроцессор стал причиной реального всплеска на рынке. Позже в 1979 году была выпущена новая модель - Intel 8088. Если вы знакомы с рынком ПК и его историей, то знаете, что рынок ПК переехал от Intel 8088 к Intel 80286, а тот к Intel 80386 и Intel 80486, а после к Pentium, Pentium II, Pentium III и Pentium 4. Все эти микропроцессоры сделаны Intel, и все они являются улучшениями базовой конструкции Intel 8088. Pentium 4 может выполнить любой код, но делает он это в 5000 раз быстрее.

В 2004 году Intel представила микропроцессоры с несколькими ядрами и миллионным количеством транзисторов, но даже эти микропроцессоры следовали общим правилам, что и ранее изготовленные чипы. Дополнительная информация в таблице:

  • Дата : является годом, когда процессор был впервые представлен. Многие процессоры были выпущены вновь, но уже с более высокими тактовыми частотами, и это продолжалось в течение многих лет после оригинальной даты выпуска
  • Транзисторы : это количество транзисторов на кристалле. Вы можете видеть, что число транзисторов на одном кристалле неуклонно растёт на протяжении многих лет
  • Микрон : ширина в микронах наименьшей проволоки на чипе. Для сравнения могу привести человеческий волос, имеющий толщину около 100 мкм. Поскольку размеры были всё меньше и меньше, число транзисторов возрастало
  • Тактовая частота : максимальная скорость, которую чип может развить. О тактовой частоте я расскажу чуточку позже
  • Ширина (шина) данных : является шириной АЛУ (арифметико-логическое устройство). 8-битное АЛУ может добавить, вычесть, умножить и т. д. Во многих случаях шина данных имеет ту же ширину, как АЛУ, но не всегда. Intel 8088 был 16-битным и имел 8-битную шину, в то время как современные модели Pentium 64-битные.
  • MIPS : данная колонка в таблице выступает за отображение количества операций в секунду. Является единицей измерения для микропроцессоров. Современные процессоры могут сделать столько всяких штук, что сегодняшние рейтинги, представленные в таблице, потеряют всякий смысл. Зато вы можете ощутить относительную мощность микропроцессоров тех времён
Из этой таблицы видно, что, в общем, существует связь между тактовой частотой и MIPS (количеством совершаемых операций в секунду). Максимальная тактовая частота является функцией производственного процессора. Существует также зависимость между количеством транзисторов и количеством операций в секунду. Например, Intel 8088 с тактовой частотой 5 МГц (а сейчас 2.5-3 ГГц) выполняет только 0.33 MIPS (около одной инструкции для каждого 15 такта). Современные процессоры могут часто выполнять две инструкции за такт. Это повышение напрямую связано с числом транзисторов на чипе и я расскажу об этом тоже далее.

Что такое чип?


Чип также называется интегральной схемой. Обычно это небольшой, тонкий кусочек кремния, на которой транзисторы, входящие в состав микропроцессора были выгравированы. Чип может быть размером в один дюйм, но при этом содержать в себе десятки миллионов транзисторов. Более простые процессоры могут состоять из нескольких тысяч транзисторов, выгравированных на чипе всего в несколько квадратных миллиметров.

Как это работает



Intel Pentium 4

Чтобы понять, как работает микропроцессор, было бы полезно заглянуть внутрь и узнать о его внутренностях. В процессе вы также можете узнать о языке ассемблера - родном языке микропроцессора, и многое из того, что инженеры могут сделать, чтобы увеличить скорость процессора.

Микропроцессор выполняет коллекцию машинных инструкций, которые сообщают процессору, что делать. Основываясь на инструкциях, микропроцессор делает три основные вещи:

  • Используя своё АЛУ (арифметико-логическое устройство), микропроцессор может выполнять математические операции. Например, сложение, вычитание, умножение и деление. Современные микропроцессоры способны выполнять чрезвычайно сложные операции
  • Микропроцессор может перемещать данные из одного места памяти в другое
  • Микропроцессор может принимать решения и перейти к новому набору инструкций, основанному на этих решениях


Говоря прямо, микропроцессор делает сложные штуки, но выше я описал три основных вида деятельности. Следующая диаграмма показывает очень простой микропроцессор, способный делать эти три вещи. Этот микропроцессор имеет:

  • Шина адреса (8, 16 или 32 бита), которая посылает обращение к памяти
  • Шина данных (8, 16 или 32 бита), которая передаёт данные в память или принимает данные от памяти
  • RD (read, чтение) и WR (write, запись) сообщают памяти, хотят ли они произвести установку или же получить адресованное местоположение
  • Линия часов, которая позволяет просмотреть последовательность тактовых импульсов процессора
  • Линия сброса, которая сбрасывает счётчик команд к нулю и перезапускает выполнение

Память микропроцессора

Ранее мы говорили о шинах адреса и данных, а также о линиях чтения и записи. Всё это соединяется либо с ОЗУ (оперативная память) или с ПЗУ (постоянная память или постоянное запоминающее устройство, ПЗУ) - как правило, с обеими. В нашем примере микропроцессора мы имеем широкую адресную шину 8 бит и такую же широкую шину данных - тоже 8 бит. Это означает, что микропроцессор может обратиться 2^8 к 256 байт памяти, и может читать и писать 8 бит памяти за один раз. Давайте предположим, что этот простой микропроцессор имеет 128 байт встроенной памяти, начиная с адреса 0 и 128 байт оперативной памяти, начиная с адреса 128.

Оперативная память выступает за память только для чтения. Микросхема постоянной памяти запрограммирована с постоянными предустановленными заданными байтами. Шинный адрес сообщает чипу оперативной памяти, который байт, добраться и поместиться на шине данных. Когда линия чтения изменяет своё состояние, микросхема постоянной памяти представляет выбранный байт на шину данных.

Оперативная память выступает за оперативную память, лол. ОЗУ содержит байт информации, и микропроцессор может читать или писать на эти байты в зависимости от того, сигнализирует ли линия чтения или записи. Одна из проблем, которую можно встретить в сегодняшних чипах - они забывают всё, как только уходит энергия. Поэтому компьютер должен обладать оперативной памятью.



RAM chip или чип постоянного запоминающего устройства (ПЗУ)

Кстати, почти все компьютеры содержат некоторое количество оперативной памяти. На персональном компьютере постоянное запоминающее устройство называется BIOS (Basic Input/Output System). При запуске микропроцессор начинает выполнять инструкции, которые он находит в BIOS. Инструкции BIOS, к слову, тоже выполняют свои роли: выполняют проверку аппаратных средств, а затем вся информация поступает на жёсткий диск, чтобы создать загрузочный сектор. Загрузочный сектор - это одна небольшая программа, и BIOS хранит её в памяти после прочтения её с диска. Затем микропроцессор начинает выполнять инструкции загрузочного сектора из оперативной памяти. Программа загрузочного сектора покажет микропроцессору, что нужно ещё взять с собой с жесткого диска в оперативную память, а затем выполняет всё это и так далее. Это - то, как микропроцессор загружает и выполняет всю операционную систему.

Микропроцессорные инструкции

Даже невероятно простой микропроцессор, описанный мною только что, будет иметь довольно большой набор инструкций, которые он может выполнять. Коллекция инструкций реализована в виде битовых шаблонов, каждый из которых имеет различное значение, когда загражается в сектор команд. Люди не особенно хорошо запоминают битовые шаблоны, так как это набор коротких слов. К слову, этот набор коротких слов называется языком ассемблера процессора. Ассемблер может переводить слова в битовый шаблон очень легко, а затем старания ассемблера будут помещены в память для микропроцессора с целью выполнения.

Вот набор инструкций языка ассемблера:

  • LOADA mem - загрузить в регистр с адресом памяти
  • LOADB mem - загрузить в регистр B от адреса памяти
  • CONB mem - загрузить постоянное значение в регистр B
  • SAVEB mem - сохранить регистр B в адрес памяти
  • SAVEC mem - сохранить регистр C в адрес памяти
  • ADD - добавить A и B и сохранить результат в C
  • SUB - вычесть A и B и сохранить результат в C
  • MUL - умножить A и B и сохранить результат в C
  • DIV - разделить A и B и сохранить результат в C
  • COM - сравнить A и B и сохранить результат в тесте
  • JUMP addr - перейти по адресу
  • JEQ addr - перейти, если равно, для решения
  • JNEQ addr - перейти, если не равно, для решения
  • JG addr - перейти, если больше, для решения
  • JGE addr - перейти, если больше или равно, для решения
  • JL addr - перейти, если меньше, для решения
  • JLE addr - перейти, если меньше или равно, для решения
  • STOP - остановить выполнение
Язык ассемблера
Компилятор C переводит этот C-код на языке ассемблера. Если предположить, что оперативная память начинается с адреса 128 в этом процессоре, и постоянное запоминающее устройство (в котором содержится программа на языке ассемблера) начинается с адреса 0, то для нашего простого микропроцессора ассемблер может выглядеть следующим образом:

// Assume a is at address 128// Assume F is at address 1290 CONB 1 // a=1;1 SAVEB 1282 CONB 1 // f=1;3 SAVEB 1294 LOADA 128 // if a > 5 the jump to 175 CONB 56 COM7 JG 178 LOADA 129 // f=f*a;9 LOADB 12810 MUL11 SAVEC 12912 LOADA 128 // a=a+1;13 CONB 114 ADD15 SAVEC 12816 JUMP 4 // loop back to if17 STOP

Постоянное запоминающее устройство (ПЗУ)
Таким образом, теперь вопрос: «Как все эти инструкции интегрируются с постоянным запоминающим устройством?». Я поясню, конечно: каждая из этих команд на языке ассемблера должна быть представлена в виде двоичного числа. Для простоты предположим, что каждая команда на языке ассемблера присваивает себе уникальный номер. Например, это будет выглядеть так:

  • LOADA - 1
  • LOADB - 2
  • CONB - 3
  • SAVEB - 4
  • SAVEC mem - 5
  • ADD - 6
  • SUB - 7
  • MUL - 8
  • DIV - 9
  • COM - 10
  • JUMP addr - 11
  • JEQ addr - 12
  • JNEQ addr - 13
  • JG addr - 14
  • JGE addr - 15
  • JL addr - 16
  • JLE addr - 17
  • STOP - 18
Данные цифры будут известны как коды операций. В постоянном запоминающем устройстве наша маленькая программа будет выглядеть следующим образом:

// Assume a is at address 128// Assume F is at address 129Addr opcode/value0 3 // CONB 11 12 4 // SAVEB 1283 1284 3 // CONB 15 16 4 // SAVEB 1297 1298 1 // LOADA 1289 12810 3 // CONB 511 512 10 // COM13 14 // JG 1714 3115 1 // LOADA 12916 12917 2 // LOADB 12818 12819 8 // MUL20 5 // SAVEC 12921 12922 1 // LOADA 12823 12824 3 // CONB 125 126 6 // ADD27 5 // SAVEC 12828 12829 11 // JUMP 430 831 18 // STOP

Вы видите, что 7 линий C-кода стали 18 линиями ассемблера, и это всё стало 32 байтами в постоянном запоминающем устройстве.

Декодирование
Инструкция декодирования должна превратить каждый из кодов операций в набор сигналов, которые будут управлять различными компонентами внутри микропроцессора. Давайте возьмём инструкции ADD в качестве примера и посмотрим, что она должна будет сделать. Итак:

  • 1. В первом такте необходимо загрузить саму инструкцию, поэтому декодеру нужно: активировать тремя состояниями буфер для счётчика команд, активировать линию чтения (RD), активировать данные в трёх штатах буфера в регистре команд
  • 2. Во втором такте инструкция ADD декодируется. Тут нужно сделать совсем немного: установить операцию арифметико-логического устройства (АЛУ) в регистр C
  • 3. Во время третьего такта программный счётчик увеличивается (в теории это может перекрываться во втором такте)
Каждая инструкция может быть разбита в виде набора секвенированных операций - таких, какие мы только что просмотрели. Они манипулируют компонентами микропроцессора в правильном порядке. Некоторые указания, как, например, инструкция ADD, может занять два-три такта. Другие могут занять пять или шесть тактов.

Подойдём к концу


Количество транзисторов имеет огромное влияние на производительность процессора. Как можно заметить выше, типичный микропроцессор Intel 8088 мог выполнять 15 циклов. Чем больше транзисторов, тем выше производительность - всё просто. Большое количество транзисторов также допускает такую технологию, как конвейерная обработка.

Конвейерная архитектура складывается из выполнения команд. Это может занять пять циклов для выполнения одной команды, но не может быть пять инструкций на разных стадиях исполнения одновременно. Таким образом, похоже, что одна команда завершает каждый тактовый цикл.

Все эти тенденции позволяют расти количеству транзисторов, что приводит к многомиллионным транзисторным тяжеловесам, которые доступны сегодня. Подобные процессоры могут выполнять около миллиарда операций в секунду - только представьте себе. Кстати, сейчас многие производители стали интересоваться выпуском 64-битных мобильных процессоров и очевидно наступает очередная волна, только на сей раз королём моды является 64-разрядная архитектура. Может и я доберусь в ближайшее время до этой темы и поведаю вам, как же на самом деле это работает. На этом, пожалуй, всё на сегодня. Надеюсь, вам было интересно и вы узнали много нового.

Процессор – это основное устройство ЭВМ, выполняющее логические и арифметические операции, и осуществляющее управление всеми компонентами ЭВМ. Процессор представляет собой миниатюрную тонкую кремниевую пластинку прямоугольной формы, на которой размещается огромное количество транзисторов, реализующих все функции, выполняемые процессором. Кремневая пластинка – очень хрупкая, а так как ее любое повреждение приведет к выходу из строя процессора, то она помещается в пластиковый или керамический корпус.

1. Введение 2. Ядро процессора 2.1. Принцип работы ядра процессора 2.2. Способы повышения производительности ядра процессора 2.2.1. Конвейеризация 2.2.2. Суперскалярность 2.2.3. Параллельная обработка данных 2.2.4. Технология Hyper-threading 2.2.5. Технология Turbo Boost. 2.2.6. Эффективность выполнения команд. 2.3 Способы снижения энергопотребления ядра процессора 3. КЭШ-память

1. Введение.

Современный процессор – это сложное и высокотехнологическое устройство, включающее в себя все самые последние достижения в области вычислительной техники и сопутствующих областей науки.

Большинство современных процессоров состоит из:

    одного или нескольких ядер, осуществляющих выполнение всех инструкций;

    нескольких уровней КЭШ-памяти (обычно, 2 или три уровня), ускоряющих взаимодействие процессора с ОЗУ;

    контроллера ОЗУ;

    контроллера системной шины (DMI, QPI, HT и т.д.);

И характеризуется следующими параметрами:

    типом микроархитектуры;

    тактовой частотой;

    набором выполняемых команд;

    количеством уровней КЭШ-памяти и их объемом;

    типом и скоростью системной шины;

    размерами обрабатываемых слов;

    наличием или отсутствием встроенного контроллера памяти;

    типом поддерживаемой оперативной памяти;

    объемом адресуемой памяти;

    наличием или отсутствием встроенного графического ядра;

    энергопотреблением.

Упрощенная структурная схема современного многоядерного процессора представлена на рисунке 1.

Начнем обзор устройства процессора с его основной части – ядра.

2. Ядро процессора.

Ядро процессора – это его основная часть, содержащая все функциональные блоки и осуществляющая выполнение всех логических и арифметических операций.

На рисунке 1 приведена структурная схема устройства ядра процессора. Как видно на рисунке, каждое ядро процессора состоит из нескольких функциональных блоков:

    блока выборки инструкций;

    блоков декодирования инструкций;

    блоков выборки данных;

    управляющего блока;

    блоков выполнения инструкций;

    блоков сохранения результатов;

    блока работы с прерываниями;

    набора регистров;

    счетчика команд.

Блок выборки инструкций осуществляет считывание инструкций по адресу, указанному в счетчике команд. Обычно, за такт он считывает несколько инструкций. Количество считываемых инструкций обусловлено количеством блоков декодирования, так как необходимо на каждом такте работы максимально загрузить блоки декодирования. Для того чтобы блок выборки инструкций работал оптимально, в ядре процессора имеется предсказатель переходов.

Предсказатель переходов пытается определить, какая последовательность команд будет выполняться после совершения перехода. Это необходимо, чтобы после условного перехода максимально нагрузить конвейер ядра процессора.

Блоки декодирования , как понятно из названия, – это блоки, которые занимаются декодированием инструкций, т.е. определяют, что надо сделать процессору, и какие дополнительные данные нужны для выполнения инструкции. Задача эта для большинства современных коммерческих процессоров, построенных на базе концепции CISC, – очень сложная. Дело в том, что длина инструкций и количество операндов – нефиксированные, и это сильно усложняет жизнь разработчикам процессоров и делает процесс декодирования нетривиальной задачей.

Часто отдельные сложные команды приходится заменять микрокодом – серией простых инструкций, в совокупности выполняющих то же действие, что и одна сложная инструкция. Набор микрокода прошит в ПЗУ, встроенном в процессоре. К тому же микрокод упрощает разработку процессора, так как отпадает надобность в создании сложноустроенных блоков ядра для выполнения отдельных команд, да и исправить микрокод гораздо проще, чем устранить ошибку в функционировании блока.

В современных процессорах, обычно, бывает 2-4 блока декодирования инструкций, например, в процессорах Intel Core 2 каждое ядро содержит по два таких блока.

Блоки выборки данных осуществляют выборку данных из КЭШ-памяти или ОЗУ, необходимых для выполнения текущих инструкций. Обычно, каждое процессорное ядро содержит несколько блоков выборки данных. Например, в процессорах Intel Core используется по два блока выборки данных для каждого ядра.

Управляющий блок на основании декодированных инструкций управляет работой блоков выполнения инструкций, распределяет нагрузку между ними, обеспечивает своевременное и верное выполнение инструкций. Это один из наиболее важных блоков ядра процессора.

Блоки выполнения инструкций включают в себя несколько разнотипных блоков:

ALU – арифметическое логическое устройство;

FPU – устройство по выполнению операций с плавающей точкой;

Блоки для обработки расширения наборов инструкций. Дополнительные инструкции используются для ускорения обработки потоков данных, шифрования и дешифрования, кодирования видео и так далее. Для этого в ядро процессора вводят дополнительные регистры и наборы логики. На данный момент наиболее популярными расширениями наборов инструкция являются:

MMX (Multimedia Extensions) – набор инструкций, разработанный компанией Intel, для ускорения кодирования и декодирования потоковых аудио и видео-данных;

SSE (Streaming SIMD Extensions) – набор инструкций, разработанный компанией Intel, для выполнения одной и той же последовательности операций над множеством данных с распараллеливанием вычислительного процесса. Наборы команд постоянно совершенствуются, и на данный момент имеются ревизии: SSE, SSE2, SSE3, SSSE3, SSE4;

ATA (Application Targeted Accelerator) – набор инструкций, разработанный компанией Intel, для ускорения работы специализированного программного обеспечения и снижения энергопотребления при работе с такими программами. Эти инструкции могут использоваться, например, при расчете контрольных сумм или поиска данных;

3DNow – набор инструкций, разработанный компанией AMD, для расширения возможностей набора инструкций MMX;

AES (Advanced Encryption Standard) – набор инструкций, разработанный компанией Intel, для ускорения работы приложений, использующих шифрование данных по одноименному алгоритму.

Блок сохранения результатов обеспечивает запись результата выполнения инструкции в ОЗУ по адресу, указанному в обрабатываемой инструкции.

Блок работы с прерываниями. Работа с прерываниями – одна из важнейших задач процессора, позволяющая ему своевременно реагировать на события, прерывать ход работы программы и выполнять требуемые от него действия. Благодаря наличию прерываний, процессор способен к псевдопараллельной работе, т.е. к, так называемой, многозадачности.

Обработка прерываний происходит следующим образом. Процессор перед началом каждого цикла работы проверяет наличие запроса на прерывание. Если есть прерывание для обработки, процессор сохраняет в стек адрес инструкции, которую он должен был выполнить, и данные, полученные после выполнения последней инструкции, и переходит к выполнению функции обработки прерывания.

После окончания выполнения функции обработки прерывания, из стека считываются сохраненные в него данные, и процессор возобновляет выполнение восстановленной задачи.

Регистры – сверхбыстрая оперативная память (доступ к регистрам в несколько раз быстрее доступа к КЭШ-памяти) небольшого объема (несколько сотен байт), входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций. Регистры процессора делятся на два типа: регистры общего назначения и специальные регистры.

Регистры общего назначения используются при выполнении арифметических и логических операций, или специфических операций дополнительных наборов инструкций (MMX, SSE и т.д.).

Регистры специального назначения содержат системные данные, необходимые для работы процессора. К таким регистрам относятся, например, регистры управления, регистры системных адресов, регистры отладки и т.д. Доступ к этим регистрам жестко регламентирован.

Счетчик команд – регистр, содержащий адрес команды, которую процессор начнет выполнять на следующем такте работы.

Центральный процессор - это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Центральный процессор в общем случае содержит в себе:

    арифметико-логическое устройство;

    шины данных и шины адресов;

    регистры;

    счетчики команд;

    кэш - очень быструю память малого объема,

    математический сопроцессор чисел с плавающей точкой.

Современные процессоры выполняются в виде микропроцессоров. Физически микропроцессор представляет собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристаллическая пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

Основные характеристики процессора:

    Производительность - основная характеристика, показывающая скорость выполнения компьютером операций обработки информации. Она в свою очередь зависит от следующих характеристик:

    Тактовая частота - определяет число тактов работы процессора в секунду

    Разрядность - определяет размер минимальной порции информации, называемой машинным словом

    Адресное пространство - разрядность адресной шины, то есть максимальный объём оперативной памяти, которая может быть установлена на компьютере

8.2.3. Принцип действия процессора.

Процессор является главным элементом ЭВМ. Он прямо или косвенно управляет всеми устройствами и процессами, происходящими в ЭВМ.

В конструкции современных процессоров четко просматривается тенденция постоянного увеличения тактовой частоты. Это естественно: чем больше операций выполняет процессор, тем выше его производительность. Предельная тактовая частота во многом определяется существующей технологией производства микросхем (наименьшими достижимыми размерами элементов, которые определяют минимальное время передачи сигналов).

Кроме повышения тактовой частоты, увеличение производительности процессоров достигается разработчиками менее очевидными приемами, связанными с изобретением новых архитектур и алгоритмов обработки информации. Некоторые из них рассмотрим на примере процессора Pentium (Р5) и последующих моделей.

Перечислим основные особенности процессора Pentium:

    конвейерная обработка информации;

    суперскалярная архитектура;

    наличие раздельных кэш-памятей для команд и данных;

    наличие блока предсказания адреса перехода;

    динамическое исполнение программы;

    наличие блока вычислений с плавающей точкой;

    поддержка многопроцессорного режима работы;

    наличие средства обнаружения ошибок.

Термин «суперскалярная архитектура» означает, что процессор содержит более одного вычислительного блока. Эти вычислительные блоки чаще называют конвейерами. Заметим, что первая суперскалярная архитектура была реализована в отечественной ЭВМ «Эльбрус-1» (1978 г.).

Наличие в процессоре двух конвейеров позволяет ему одновременно выполнять (завершать) две команды (инструкции).

Каждый конвейер разделяет процесс выполнения команды на несколько этапов (например, пять):

    выборка (считывание) команды из ОЗУ или кэш-памяти;

    декодирование (дешифрация) команды, т. е. определение кода выполняемой операции;

    выполнение команды;

    обращение к памяти;

    запоминание полученных результатов в памяти.

Для реализации каждого из перечисленных этапов (каждой операции) служит отдельное устройство- ступень. Таким образом, в каждом конвейере процессора Pentium имеется пять ступеней.

При конвейерной обработке на выполнение каждого этапа отводится один такт синхронизирующей (тактовой) частоты. В каждом новом такте заканчивается выполнение одной команды и начинается выполнение новой команды. Такое выполнение команд называют поточной обработкой.

Образно ее можно сравнить с производственным конвейером (потоком), где на каждом участке с разными изделиями выполняют всегда одну и ту же операцию. При этом, когда готовое изделие сходит с конвейера, на него заходит новое, а остальные изделия в это время находятся на разных стадиях готовности. Переход изготавливаемых изделий с участка на участок должен происходить синхронно, по специальным сигналам (в процессоре это такты, формируемые тактовым генератором).

Общее время выполнения одной команды в конвейере с пятью ступенями будет составлять пять периодов тактовой частоты. В каждом такте конвейер будет одновременно обрабатывать (выполнять) пять различных команд. В результате за пять тактов будет выполнено пять команд. Таким образом, конвейеризация увеличивает производительность процессора, но она не сокращает время выполнения отдельной команды. Выигрыш получается за счет того, что обрабатывается сразу несколько команд.

В действительности конвейеризация даже увеличивает время выполнения каждой отдельной команды из-за появления дополнительных расходов, связанных с организацией работы конвейера. При этом тактовая частота ограничивается быстродействием работы самой медленной ступени конвейера.

В качестве примера рассмотрим процесс выполнения команды, у которой длительности выполнения этапов составляют 60, 30, 40, 50 и 20 нс. Примем дополнительные расходы на организацию конвейерной обработки равными 5 нс.

Если бы не было конвейеризации, то на выполнение одной команды потребовалось

60 + 30 + 40 + 50 + 20 = 200 нс.

Если же используется конвейерная организация, то длительность такта должна быть равна длительности самого медленного этапа обработки с добавлением «накладных» расходов, т.е. 60 + 5 = 65 нс. Таким образом, полученное в результате конвейеризации сокращение времени выполнения команды составит 200/65»3,1 раза.

Заметим, что время выполнения конвейером одной команды составляет 5 × 65 = 325 нс. Эта величина существенно больше 200 нс - времени выполнения команды без конвейеризации. Но одновременное выполнение сразу пяти команд дает среднее время завершения одной команды 65 нс.

Процессор Pentium имеет две кэш-памяти первого уровня (они расположены внутри процессора). Как известно, кэширование увеличивает производительность процессора за счет уменьшения числа случаев ожидания поступления информации из медленной оперативной памяти. Нужные данные и команды берутся процессором из быстрой кэш-памяти (буфера), куда они заносятся заранее.

Наличие одной кэш-памяти в предыдущих конструкциях процессоров приводило к возникновению структурных конфликтов. Две команды, выполнявшиеся конвейером, порой одновременно пытались считать информацию из единственной кэш-памяти. Выполнение раздельного кэширования (буферизации) для команд и данных исключает такие конфликты, давая возможность обеим командам выполняться одновременно.

Развитие вычислительной техники идет непрерывно. Постоянно конструкторы ищут новые пути совершенствования своих изделий. Наиболее ценным ресурсом процессоров является их производительность. По этой причине изобретаются разнообразные приемы повышения производительности процессоров.

Одним из таких приемов является экономия времени за счет предсказания возможных путей выполнения разветвляющегося алгоритма. Это осуществляется с помощью блока предсказания адреса будущего перехода. Идея его работы похожа на идею работы кэш-памяти.

Как известно, существуют линейные, циклические и разветвляющиеся вычислительные процессы. В линейных алгоритмах команды выполняются в порядке их записи в оперативной памяти: последовательно одна за другой. Для таких алгоритмов введенный в процессор блок предсказания адреса перехода не может дать выигрыша.

В разветвляющихся алгоритмах выбор команды определяется результатами проверки условий ветвлений. Если ждать окончания вычислительного процесса в точке ветвления и затем выбирать из ОЗУ нужную команду, то неизбежно появятся потери времени из-за непроизводительного простоя процессора (считывание команды из ОЗУ идет медленно).

Блок предсказания адреса перехода работает на опережение и пытается заблаговременно предсказать адрес перехода, чтобы заранее перенести нужную команду из медленной оперативной памяти в специальный быстрый буфер перехода BTB (Branch Target Buffer).

Когда буфер ВТВ содержит правильное предсказание, переход происходит без задержки. Это напоминает работу кэш-памяти, у которой также бывают промахи. Из-за промахов операнды приходится считывать не из кэш-памяти, а из медленной ОП. Из-за этого происходит потеря времени.

Реализацию идеи предсказания адреса перехода осуществляют в процессоре два независимых буфера предварительной выборки. Они работают совместно с буфером предсказания переходов, причем один из буферов выбирает команды последовательно, а второй - согласно предсказаниям ВТВ.

Процессор Pentium имеет два пятиступенчатых конвейера для выполнения операций в формате с фиксированной точкой. Кроме того, в процессоре имеется конвейер с восьмью ступенями для вычислений в формате с плавающей точкой. Такие вычисления требуются при выполнении математических расчетов, а также для быстрой обработки динамических трехмерных цветных изображений.

Развитие архитектуры процессоров идет по пути постоянного увеличения объема кэш-памяти первого и второго уровней. Исключением стал процессор Pentium 4, у которого объем кэш-памяти неожиданно снизился по сравнению с Pentium III.

Для повышения производительности в новых конструкциях процессоров создают две системные шины, работающие с разными тактовыми частотами. Быстрая шина используется для работы с кэш-памятью второго уровня, а медленная - для традиционного обмена информацией с другими устройствами, например ОЗУ. Наличие двух шин исключает конфликты при обмене информацией процессора с основной памятью и кэш-памятью второго уровня, находящейся за пределами кристалла процессора.

Следующие за Pentium процессоры содержат большое число ступеней в конвейере. Это уменьшает время выполнения каждой операции в отдельной ступени, а значит, позволяет поднять тактовую частоту процессора.

В процессоре Pentium Pro (P6) применен новый подход к порядку выполнения команд, последовательно расположенных в ОЗУ.

Новый подход заключается в выполнении команд в произвольном порядке по мере их готовности (независимо от порядка расположения в ОЗУ). Однако конечный результат формируется всегда в соответствии с исходным порядком команд в программе. Такой порядок выполнения команд называется динамическим или опережающим.

Рассмотрим в качестве примера следующий фрагмент учебной программы, записанной на некотором (вымышленном) машинно-ориентированном языке.

r1 ¬mem Команда 1

r3 ¬r1 + r2 Команда 2

r5 ¬r5 + 1 Команда 3

r6 ¬r6 – r7 Команда 4

Символами r1…r7 обозначены регистры общего назначения (РОН), которые входят в блок регистров процессора.

Символом memобозначена ячейка памяти ОЗУ.

Прокомментируем записанную программу.

Команда 1: записать в РОН r1 содержимое ячейки памяти ОЗУ, адрес которой указан в РОН r4.

Команда 2: записать в РОН r3 результат сложения содержимого регистров r1 и r2.

Команда 3: прибавить к содержимому регистра r5 единицу.

Команда 4: уменьшить содержимое РОН r6 на содержимое регистра r7.

Предположим, что при выполнении команды 1 (загрузка операнда из памяти в регистр общего назначения r1) оказалось, что содержимое ячейки памяти mem отсутствует в кэш-памяти процессора (произошел промах, нужный операнд не был заранее доставлен в буфер из ОЗУ).

При традиционном подходе процессор перейдет к выполнению команд 2, 3, 4 только после того, как данные из ячейки mem основной памяти поступят в процессор (точнее, в регистр r1). Так как считывание будет происходить из медленно работающей оперативной памяти, этот процесс займет достаточно много времени (по меркам процессора). Все время ожидания этого события процессор будет простаивать, не выполняя полезной работы.

В приведенном примере процессор не может выполнить команду 2 до завершения команды 1, так как команда 2 использует результаты выполнения команды 1. В то же время процессор мог бы заранее выполнить команды 3 и 4, которые не зависят от результата выполнения команд 1 и 2.

В подобных случаях процессор Р6 работает иначе.

Процессор Р6 не ждет окончания выполнения команд 1 и 2, а сразу переходит к внеочередному выполнению команд 3 и 4. Результаты опережающего выполнения команд 3 и 4 сохраняются и извлекаются позднее, после выполнения команд 1 и 2.Таким образом, процессор Р6 выполняет команды в соответствии с их готовностью к выполнению, вне зависимости от их первоначального расположения в программе.

Производительность, безусловно, важный показатель работы ЭВМ. Однако не менее важно, чтобы быстрые вычисления происходили при малом числе ошибок.

В процессоре имеется устройство самотестирования, которое автоматически проверяет работоспособность большинства элементов процессора.

Кроме того, выявление сбоев, произошедших внутри процессора, осуществляется с помощью специального формата данных. К каждому операнду добавляется бит четности, в результате чего все циркулирующие внутри процессора числа становятся четными. Появление нечетного числа сигнализирует о случившемся сбое. Наличие нечетного числа - это как бы появление фальшивой банкноты без водяных знаков.

Единицами измерения быстродействия процессоров (и ЭВМ) могут служить:

    МИПС (MIPS- Mega Instruction Per Second)- миллион команд (инструкций) над числами с фиксированной точкой за секунду;

    МФЛОПС (MFLOPS- Mega Floating Operation Per Second)- миллион операций над числами с плавающей точкой за секунду;

    ГФЛОПС (GFLOPS- Giga Floating Operation Per Second)- миллиард операций над числами с плавающей точкой за секунду.

Имеются сообщения о самом быстром в мире компьютере ASCI White (корпорация IBM), быстродействие которого достигает 12,3 ТФЛОПС (триллиона операций).

Инструмент проще, чем машина. Зачастую инструментом работают руками, а машину приводит в действие паровая сила или животное.

Чарльз Бэббидж

Компьютер тоже можно назвать машиной, только вместо паровой силы здесь электричество. Но программирование сделало компьютер таким же простым, как любой инструмент.

Процессор - это сердце/мозг любого компьютера. Его основное назначение - арифметические и логические операции, и прежде чем погрузиться в дебри процессора, нужно разобраться в его основных компонентах и принципах их работы.

Два основных компонента процессора

Устройство управления

Устройство управления (УУ) помогает процессору контролировать и выполнять инструкции. УУ сообщает компонентам, что именно нужно делать. В соответствии с инструкциями он координирует работу с другими частями компьютера, включая второй основной компонент - арифметико-логическое устройство (АЛУ). Все инструкции вначале поступают именно на устройство управления.

Существует два типа реализации УУ:

  • УУ на жёсткой логике (англ. hardwired control units). Характер работы определяется внутренним электрическим строением - устройством печатной платы или кристалла. Соответственно, модификация такого УУ без физического вмешательства невозможна.
  • УУ с микропрограммным управлением (англ. microprogrammable control units). Может быть запрограммирован для тех или иных целей. Программная часть сохраняется в памяти УУ.

УУ на жёсткой логике быстрее, но УУ с микропрограммным управлением обладает более гибкой функциональностью.

Арифметико-логическое устройство

Это устройство, как ни странно, выполняет все арифметические и логические операции, например сложение, вычитание, логическое ИЛИ и т. п. АЛУ состоит из логических элементов, которые и выполняют эти операции.

Большинство логических элементов имеют два входа и один выход.

Ниже приведена схема полусумматора, у которой два входа и два выхода. A и B здесь являются входами, S - выходом, C - переносом (в старший разряд).

Схема арифметического полусумматора

Хранение информации - регистры и память

Как говорилось ранее, процессор выполняет поступающие на него команды. Команды в большинстве случаев работают с данными, которые могут быть промежуточными, входными или выходными. Все эти данные вместе с инструкциями сохраняются в регистрах и памяти.

Регистры

Регистр - минимальная ячейка памяти данных. Регистры состоят из триггеров (англ. latches/flip-flops). Триггеры, в свою очередь, состоят из логических элементов и могут хранить в себе 1 бит информации.

Прим. перев. Триггеры могут быть синхронные и асинхронные. Асинхронные могут менять своё состояние в любой момент, а синхронные только во время положительного/отрицательного перепада на входе синхронизации.

По функциональному назначению триггеры делятся на несколько групп:

  • RS-триггер: сохраняет своё состояние при нулевых уровнях на обоих входах и изменяет его при установке единице на одном из входов (Reset/Set - Сброс/Установка).
  • JK-триггер: идентичен RS-триггеру за исключением того, что при подаче единиц сразу на два входа триггер меняет своё состояние на противоположное (счётный режим).
  • T-триггер: меняет своё состояние на противоположное при каждом такте на его единственном входе.
  • D-триггер: запоминает состояние на входе в момент синхронизации. Асинхронные D-триггеры смысла не имеют.

Для хранения промежуточных данных ОЗУ не подходит, т. к. это замедлит работу процессора. Промежуточные данные отсылаются в регистры по шине. В них могут храниться команды, выходные данные и даже адреса ячеек памяти.

Принцип действия RS-триггера

Память (ОЗУ)

ОЗУ (оперативное запоминающее устройство, англ. RAM) - это большая группа этих самых регистров, соединённых вместе. Память у такого хранилища непостоянная и данные оттуда пропадают при отключении питания. ОЗУ принимает адрес ячейки памяти, в которую нужно поместить данные, сами данные и флаг записи/чтения, который приводит в действие триггеры.

Прим. перев. Оперативная память бывает статической и динамической - SRAM и DRAM соответственно. В статической памяти ячейками являются триггеры, а в динамической - конденсаторы. SRAM быстрее, а DRAM дешевле.

Команды (инструкции)

Команды - это фактические действия, которые компьютер должен выполнять. Они бывают нескольких типов:

  • Арифметические : сложение, вычитание, умножение и т. д.
  • Логические : И (логическое умножение/конъюнкция), ИЛИ (логическое суммирование/дизъюнкция), отрицание и т. д.
  • Информационные : move , input , outptut , load и store .
  • Команды перехода : goto , if ... goto , call и return .
  • Команда останова : halt .

Прим. перев. На самом деле все арифметические операции в АЛУ могут быть созданы на основе всего двух: сложение и сдвиг. Однако чем больше базовых операций поддерживает АЛУ, тем оно быстрее.

Инструкции предоставляются компьютеру на языке ассемблера или генерируются компилятором высокоуровневых языков.

В процессоре инструкции реализуются на аппаратном уровне. За один такт одноядерный процессор может выполнить одну элементарную (базовую) инструкцию.

Группу инструкций принято называть набором команд (англ. instruction set).

Тактирование процессора

Быстродействие компьютера определяется тактовой частотой его процессора. Тактовая частота - количество тактов (соответственно и исполняемых команд) за секунду.

Частота нынешних процессоров измеряется в ГГц (Гигагерцы). 1 ГГц = 10⁹ Гц - миллиард операций в секунду.

Чтобы уменьшить время выполнения программы, нужно либо оптимизировать (уменьшить) её, либо увеличить тактовую частоту. У части процессоров есть возможность увеличить частоту (разогнать процессор), однако такие действия физически влияют на процессор и нередко вызывают перегрев и выход из строя.

Выполнение инструкций

Инструкции хранятся в ОЗУ в последовательном порядке. Для гипотетического процессора инструкция состоит из кода операции и адреса памяти/регистра. Внутри управляющего устройства есть два регистра инструкций, в которые загружается код команды и адрес текущей исполняемой команды. Ещё в процессоре есть дополнительные регистры, которые хранят в себе последние 4 бита выполненных инструкций.

Ниже рассмотрен пример набора команд, который суммирует два числа:

  1. LOAD_A 8 . Это команда сохраняет в ОЗУ данные, скажем, <1100 1000> . Первые 4 бита - код операции. Именно он определяет инструкцию. Эти данные помещаются в регистры инструкций УУ. Команда декодируется в инструкцию load_A - поместить данные 1000 (последние 4 бита команды) в регистр A .
  2. LOAD_B 2 . Ситуация, аналогичная прошлой. Здесь помещается число 2 (0010) в регистр B .
  3. ADD B A . Команда суммирует два числа (точнее прибавляет значение регистра B в регистр A). УУ сообщает АЛУ, что нужно выполнить операцию суммирования и поместить результат обратно в регистр A .
  4. STORE_A 23 . Сохраняем значение регистра A в ячейку памяти с адресом 23 .

Вот такие операции нужны, чтобы сложить два числа.

Шина

Все данные между процессором, регистрами, памятью и I/O-устройствами (устройствами ввода-вывода) передаются по шинам. Чтобы загрузить в память только что обработанные данные, процессор помещает адрес в шину адреса и данные в шину данных. Потом нужно дать разрешение на запись на шине управления.

Кэш

У процессора есть механизм сохранения инструкций в кэш. Как мы выяснили ранее, за секунду процессор может выполнить миллиарды инструкций. Поэтому если бы каждая инструкция хранилась в ОЗУ, то её изъятие оттуда занимало бы больше времени, чем её обработка. Поэтому для ускорения работы процессор хранит часть инструкций и данных в кэше.

Если данные в кэше и памяти не совпадают, то они помечаются грязными битами (англ. dirty bit).

Поток инструкций

Современные процессоры могут параллельно обрабатывать несколько команд. Пока одна инструкция находится в стадии декодирования, процессор может успеть получить другую инструкцию.

Однако такое решение подходит только для тех инструкций, которые не зависят друг от друга.

Если процессор многоядерный, это означает, что фактически в нём находятся несколько отдельных процессоров с некоторыми общими ресурсами, например кэшем.

«Дареному процессору в кулер не дуют.»

Важность процессора для любого персонального компьютера трудно переоценить. Это электронное устройство сравнительно мало по размерам, но потребляет значительный процент энергии, получаемой от блока питания, а его стоимость составляет львиную долю стоимости компьютера. Не случайно многие люди, обычно не очень сведущие в компьютерной терминологии, ассоциируют процессор с самим компьютером. Хотя это, конечно же, ошибочная точка зрения, но причины подобной ассоциации нетрудно понять. Ведь процессор вполне можно уподобить мозгу компьютера, и в таком случае он будет олицетворять суть компьютера, и идентифицировать его точно так же, как мозг человека олицетворяет суть человека и идентифицирует его личность.

Следует сразу оговориться, что в этой статье будет рассказано в основном о центральном процессоре компьютера, так называемом CPU (Central Processing Unit), между тем, как к процессорам относятся и многие вспомогательные чипы, расположенные в компьютере, как, например, процессор видеокарты или звуковой карты. Тем не менее, принципы работы, характерные для CPU, во многом справедливы и для других типов чипов.

Первые процессоры появились на самой заре зарождения компьютерных технологий. А бурное развитие микрокомпьютерной техники во многом являлось следствием появления первых микропроцессоров. Если раньше все необходимые элементы CPU были расположены на различных электронных схемах, то в микропроцессорах они впервые были объединены на одном-единственном кристалле. В дальнейшем под термином «процессор» мы будем иметь в виду именно микропроцессоры, поскольку эти слова давно превратились в синонимы.

Микропроцессор i4004 - прадедушка сегодняшних CPU

Одним из первых микропроцессоров был четырехразрядный процессор фирмы Intel i4004. Он имел смехотворные по нынешним временам характеристики, но для своего времени – начала 1970-x гг., его появление представляло собой настоящий технологический прорыв. Как можно догадаться из его обозначения, он был четырехразрядным и имел тактовую частоту около 0,1 МГц. И именно его прямой потомок, процессор i8088, был выбран фирмой IBM в качестве «мозга» первого персонального компьютера фирмы IBM PC.

Процессор i8088 использовавшийся в первом персональном компьютере фирмы IBM

Шли годы, характеристики CPU становились все более серьезными и внушительными, и, как следствие, становились все более солидными характеристики персональных компьютеров. Значительной вехой в развитии микропроцессоров стал i80386. Это был первый полностью 32-разрядный CPU, который мог адресовать к 4 ГБ оперативной памяти, в то время как большинство его предшественников могло работать максимум с 640 КБ ОЗУ. Подобная разрядность микропроцессоров настольных компьютеров продержалась довольно долго, почти два десятилетия. В середине 80-х объем ОЗУ в 4 ГБ казался фантастически огромным, но сейчас его можно считать небольшим для серьезного компьютера.

i80386 - первый полностью 32-разрядный CPU

Следующий микропроцессор компании Intel, 486DX, замечателен тем, что в нем впервые появился внутренний кэш – внутренняя оперативная память микропроцессора. Кроме того, в нем было применено много других усовершенствований, которые во многом определили дальнейшую эволюцию микропроцессоров. То же самое можно сказать и про следующий процессор компании Intel, Pentium.

Intel 486DX - первый процессор с внутренним кэшем

Процессор компании Intel - Pentium

Вместе с CPU Pentium 4 в ряду технологий, использующихся в микропроцессорах, появилась . А процессоры Opteron от фирмы AMD и Pentium D от Intel открыли современную эпоху эволюции CPU, эпоху процессоров, имеющих несколько ядер. Сейчас на рынке представлено много CPU от различных производителей, но главными производителями до сих пор остаются две компании – Intel и AMD, причем на долю первой приходится более 80% рынка.

CPU Opteron от фирмы AMD и Pentium D от Intel

Устройство CPU

Любой CPU имеет вычислительное ядро (иногда их бывает несколько), а также кэш, то есть собственную оперативную память. Кэш обычно имеет два уровня – первый и второй (внутренний и внешний). Внутренний имеет меньший объем, но обладает большим быстродействием по сравнению с внешним. Емкость кэша второго уровня современных CPU составляет несколько мегабайт – больше, чем оперативная память первых персональных компьютеров!

В ядре CPU находится несколько функциональных блоков – блок управления, блок выборки инструкций, блок вычислений с плавающей точкой, блок целочисленных вычислений, и.т.д. Также в ядре располагаются главные регистры processor-а, в которых находятся обрабатываемые в определенный момент данные. В классической схеме микропроцессора архитектуры х86 этих регистров всего 16.

На сегодняшний день наибольшее распространение получили две основные разновидности процессоров – CISC (Complex Instruction Set Computing) и RISC (Reduced Instruction Set Computing). В CISC-процессорах мало внутренних регистров, но они поддерживают большой набор команд. В RISC-процессорах регистров много, зато набор команд ограничен. Традиционно микропроцессоры для персональных компьютеров архитектуры Intel х86 принадлежали к классу CISC-процессоров, однако в настоящее время большинство микропроцессоров представляют собой гибрид этих двух архитектур.

Если рассмотреть CPU на аппаратном уровне, то он является, по сути, огромной микросхемой, расположенной на цельном кристалле кремния, в которой содержатся миллионы, а то и миллиарды транзисторов. Чем меньше размеры транзисторов, тем больше их содержится на единицу площади CPU, и тем больше его вычислительная мощность. Кроме того, от размеров транзисторов зависит энерговыделение и энергопотребление процессора - чем меньше их размер, тем эти характеристики процессора меньше. Этот фактор немаловажен, так как CPU является наиболее энергоемким устройством современного ПК. Поэтому проблема уменьшения нагрева процессора входит в число самых важных, стоящих перед разработчиками ПК и самих процессоров.

Отдельно стоит сказать о корпусе, в котором находится CPU. Обычно материалом корпуса процессора служит керамика или пластик. Первоначально процессоры намертво впаивались в системную плату, сейчас же большинство вставляются в специальные гнезда – сокеты. Такой подход заметно упростил модернизацию системы пользователем – достаточно вставить в разъем другой CPU, поддерживаемый данной системной платой, и вы получите более мощный компьютер.

Сокет современного процессора

С другими устройствами процессор связан при помощи специальных каналов связи ­(шин) – шины памяти, шины данных и шины адреса. Разрядность последней очень важна, поскольку от этого параметра зависит объем доступной CPU, а значит, и программам, оперативной памяти.

Принцип работы

Для обработки данных управляющее устройство CPU получает из оперативной памяти или кэша процессора сами данные, а также команды, которые описывают процесс обработки данных. Данные помещаются во внутренние регистры микропроцессора, и над ними производятся операции при помощи арифметико-логического устройства в соответствии с поступившими командами.

Принцип работы процессора

Работу CPU синхронизируют так называемые тактовые сигналы. Наверняка каждому пользователю известно понятие тактовой частоты, которая отражает количество тактов работы процессора за секунду. Это значение во многом определят характеристики процессора. Тем не менее, производительность компьютера далеко не всегда пропорциональна его тактовой частоте. И дело тут не только в наличии у современных CPU нескольких ядер, а и в том, что разные процессоры имеют разную архитектуру и, как следствие, могут выполнять разное количество операций за секунду. Современные CPU могут выполнять несколько операций за один такт, тогда как у первых микропроцессоров на одну операцию, наоборот, могло уходить несколько тактов.

CPU архитектуры х86 исторически поддерживают следующие режимы работы процессора:

  1. Реальный
  2. Защищенный
  3. Виртуальный
  4. Режим супервизора

Реальный режим работы был единственным режимом, в котором работали все CPU до i80386. В этом режиме processor мог адресовать лишь 640 КБ ОЗУ. В результате появления защищенного режима процессор получил возможность работать с большими объемами оперативной памяти. Также существует разновидность защищенного режима – виртуальный режим, предназначенный для совместимости со старыми программами, написанными для процессоров 8086.

Режимы работы процессора также включают режим супервизора, который используется при работе в современных операционных системах. В этом режиме программный код имеет неограниченный доступ ко всем системным ресурсам.

Заключение

В этой статье вы в общих чертах познакомились с назначением центрального CPU, его историей, устройством, узнали про режимы работы процессора и ознакомились с принципами его функционирования. Central Processing Unit – это самое сложное и наиболее важное устройство компьютера. Можно смело утверждать, что развитие компьютерной техники во многом взаимосвязано с прогрессом в развитии CPU. От мощности микропроцессора и его особенностей его работы зависит производительность всего компьютера, а также возможности его отдельных компонентов.