Проектирование локально вычислительной сети компании. Проектирование локальной сети


Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Новосибирский государственный технический университет»

Президентская программа

повышения квалификации инженерных кадров

Программа повышения квалификации

«Проектирование и организация коммуникационных сетей»

ВЫПУСКНАЯ АТТЕСТАЦИОННАЯ РАБОТА

тема «Проектирование локальной сети малого предприятия »

Слушатель: Белоусов М.Ю.

Преподаватель: Мищенко В.К.

Новосибирск 2012

Введение

1. Техническое задание

2. Используемые технологии

2.1 Топология

2.2 Обзор структурированной кабельной системы

2.3 Сетевое оборудование и среды передачи данных

2.4 Технологии локальных сетей

2.4.1 Технология Ethernet

2.4.2 Беспроводные локальные сети

3. Разработка архитектуры информационной сети

3.1 Выбор топологии сети для проекта

3.2 Выбор способа управления сетью

3.3 Выбор передающей среды

4. Проектирование проводной локальной сети (LAN)

5. Проектирование беспроводной локальной сети (WLAN)

5.1 Условия развёртывания сетей Wi-Fi

5.2 Разработка архитектуры с описанием основных параметров проектируемой WLAN

6. Выбор сетевого оборудования

6.1 Конфигурирование сервера

6.2 Выбор активного сетевого оборудования

7. Расчет PDV и PVV

7.1 Расчет PDV

7.2 Расчет PVV

Заключение

Список литературы

Введение

Результатом эволюции компьютерных технологий явились вычислительные сети. В настоящее время использование вычислительных сетей даёт предприятию многочисленные возможности. Конечной целью использования вычислительных сетей на предприятии является повышение эффективности его работы, которое может выражаться различными факторами: увеличении прибыли предприятия, повышение качества работы сотрудников, эффективное взаимодействие различных отделов предприятия как внутри отдельно взятого магазина, так и между торговыми точками.

Долгое время для организации локальной сети использовались проводные линии связи между отдельными узлами. Обладая многочисленными достоинствами, проводные технологии не могут полностью удовлетворить потребности крупной организации. Удаленность рабочих мест более чем на 100 м, сложность прокладки кабеля, многоэтажность здания, железобетонные перекрытия этажей - все эти факторы делают непригодным использование универсальной витой пары. На помощь приходят беспроводные сети (Wireless Local Area Network, WLAN), использующие для передачи информации радиоволны. Wi-Fi (это аббревиатура от Wireless Fidelity)- это один из форматов передачи цифровых данных по радиоканалам, стандарт IEEE 802.11.

Для предприятия выбор технологии ЛВС нужно делать, отталкиваясь от задачи, ведь цель предприятия - улучшение бизнеса. Технология Wi-Fi позволяет минимизировать время и затраты на развертывание сети. Поэтому если учесть ситуации, в которых при организации ЛВС невозможна прокладка кабеля, где стоимость прокладки кабельной сети несоизмеримо высока или необходима полная мобильность, то в этой области у беспроводных сетей нет конкуренции. Однако полностью новая технология еще не может вытеснить утвердившийся стандарт проводных сетей. Таким образом, для реализации ЛВС предприятия можно воспользоваться комбинированным вариантом.

Постановка задачи

Целью работы является разработка проекта информационной сети торговой организации.

Для решения поставленной цели необходимо разработать архитектуру информационной сети.

Актуальность проблемы

Разработка и внедрение вычислительной сети позволяет повысить эффективность работы предприятия: увеличение прибыли, повышение качества работы сотрудников, эффективное взаимодействие различных отделов предприятия как внутри отдельно взятого магазина, так и между торговыми точками. Разработанный проект учитывает особенности работы торговой организации.

Новизна работы

Для решения поставленных целей используются новые технологии, позволяющие улучшить качество реализации проекта при минимальной стоимости.

Практическая ценность

Выбор той или иной технологии реализации проекта основывается на сравнении и анализе средств решения поставленной задачи.

Внедрение результатов проекта .

Проект информационной сети внедрён и успешно эксплуатируется в торговой организации «Энтузиаст-Новосибирск».

1. Техническое задание

В данной работе рассматривается внедрение информационной сети в филиале торговой организации - магазин «Энтузиаст - Новосибирск». Он располагается на двух этажах цехового корпуса, а также занимает цокольный этаж, в котором располагается сервис центр магазина. Численность сотрудников магазина - 30 человек, половина из которых имеют персональный компьютер.

Реализация кабельной системы должна обеспечить интеграцию и работоспособность всех элементов и систем этажа.

ЛВС должна быть выполнена в соответствии с международным стандартом ISO/IEC 11801 на кабельные системы и состоять из горизонтальной и вертикальной подсистемы. Горизонтальная подсистема должна быть организована на основе 4-парного медного кабеля: неэкранированная витая пара категории 5е.

При развёртывании сети придётся столкнуться со сложностями в организации кабельной системы. Торговое помещение «Энтузиаст-Новосибирск» располагается в цеховом помещении. Сервисный центр магазина располагается на цокольном этаже, торговый зал представлен на первом и втором этажах здания. Эти факторы накладывают большие ограничения на использование современных сетевых технологий. Реализовать вертикальную кабельную структуру между этажами при наличии железобетонных перекрытий довольно проблематично. В данной ситуации выход видится в применении беспроводной технологии подключения для организации всей информационной сети предприятия. Однако стены здания также выполнены из железобетона: по этой причине сигнал Wi-Fi практически не доходит до некоторых помещений, в частности до кабинета бухгалтерии, где находятся 3 компьютера, особенно требовательные к скорости Интернета и локальной сети. Подвальные помещения также лишены возможности получать сигнал от беспроводной точки доступа.

2. Используемые технологии

2.1 Топология

Под топологией компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. При разработке данного проекта использовалась топология типа «звезда». Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи. Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным (рисунок 1).

Рис. 1 - Сетевая топология «звезда».

Достоинства звездообразной топологии:

а) нарушение соединения в каком-либо сегменте не прерывает работы локальной сети;

б) при подключении большого количества компьютеров не происходит снижения производительности;

в) безопасность информации обеспечивается на уровне сервера.

Недостатки звездообразной топологии:

а) выход из строя центрального узла приводит к неработоспособности всей сети;

б) наращивание сети сопряжено с большими финансовыми затратами

2.2 Обзор структурированной кабельной системы

Структурированная кабельная система (СКС)- физическая основа информационной инфраструктуры предприятия, позволяющая свести в единую систему множество информационных сервисов разного назначения: локальные вычислительные и телефонные сети, системы безопасности, видеонаблюдения и т. д.

СКС представляет собой иерархическую кабельную систему здания или группы зданий, разделённую на структурные подсистемы. Она состоит из набора медных и оптических кабелей, кросс-панелей, соединительных шнуров, кабельных разъёмов, модульных гнезд, информационных розеток и вспомогательного оборудования. Все перечисленные элементы интегрируются в единую систему и эксплуатируются согласно определённым правилам.

Кабельная система - это система, элементами которой являются кабели и компоненты, которые связаны с кабелем. К кабельным компонентам относится все пассивное коммутационное оборудование, служащее для соединения или физического окончания (терминирования) кабеля - телекоммуникационные розетки на рабочих местах, кроссовые и коммутационные панели («патч-панели») в телекоммуникационных помещениях, муфты и сплайсы.

Термин «структурированная» означает, с одной стороны, способность системы поддерживать различные телекоммуникационные приложения (передачу речи, данных и видеоизображений), с другой - возможность применения различных компонентов и продукции различных производителей, и с третьей- способность к реализации так называемой мультимедийной среды, в которой используются несколько типов передающих сред - коаксиальный кабель, UTP, STP и оптическое волокно.

Таблица 1 - Хронологическая таблица принятия категорий СКС

Диапазон частот

Приложения, под которые разрабатывались категории

Год принятия стандарта

Ethernet, 10Base-T

Token Ring 16Мбит/с

100Base-TX (Fast Ethernet) АТМ 155

100Base-TX (Fast Ethernet)

1000Base-T (Gigabit Ethernet)

Gigabit Ethernet 1000Base-TX

Gigabit Ethernet 2,5 Гб/с

Предложений нет

2.3 Сетевое оборудование и среды передачи данных

Сетевое оборудование - устройства, необходимые для работы компьютерной сети, такие как маршрутизатор, коммутатор, концентратор, патч-панель и др. Обычно выделяют активное и пассивное сетевое оборудование:

· Активное сетевое оборудование. Под этим названием подразумевается оборудование, за которым следует некоторая «интеллектуальная» особенность. Задача активного оборудования заключается в создании и поддержании логической структуры каналов передачи данных поверх физических носителей.

· Пассивное сетевое оборудование. Под пассивным сетевым оборудованием подразумевается оборудование, не наделенное «интеллектуальными» особенностями. Пассивное оборудование составляет физическую инфраструктуру сетей (коммутационные панели, розетки, стойки, монтажные шкафы, кабели, кабель-каналы, лотки и т.п.) От качества исполнения кабельной системы во многом зависит пропускная способность и качество каналов связи.

Средой передачи информации называется канал связи, установленный между сетевыми компьютерами. Различают кабельные и беспроводные каналы связи. В настоящее время наиболее распространены именно кабельные системы, что связано с относительной дешевизной этого технологического решения (особенно в случае применения традиционных медных кабелей).

Как правило, данные в локальных сетях передаются последовательно (поразрядно). Это решение способствует уменьшению стоимости самого кабеля, поскольку с ростом числа каналов связи неизбежно увеличивается количество проводящих жил в самом кабеле. Использование достаточно длинных кабелей неизбежно ведет к удорожанию сети, причем порой стоимость кабеля сопоставима со стоимостью остальных аппаратных компонентов сети. Существуют также и другие негативные моменты, связанные с параллельной передачей сигналов по кабелю.

Все кабели, применяемые в локальных сетях, можно отнести к одной из трех категорий:

* кабели на основе витых пар (twisted pair), которые, в свою очередь, бывают экранированными (shielded twisted pair, STP), а также неэкранированными (unshielded twisted pair, UTP);

* коаксиальные кабели (coaxial cable);

* оптоволоконные кабели (fiber cable).

Невозможно однозначно сказать, какой кабель лучше, а какой - хуже. Все определяется конкретной решаемой задачей (сетевая архитектура и топология, величина бюджетных средств, наличие требований относительно расширяемости сети в будущем и т.д.). При наличии специфических требований к развертываемой локальной сети может оказаться приемлемым беспроводное решение. В этом случае информация передается по радиоканалу или с помощью инфракрасных лучей.

2.4 Технологии локальных сетей

2.4.1 Технология Ethernet

Ethernet был разработан Исследовательским центром в Пало Альто (PARC) корпорации Xerox в 1970-м году. Ethernet стал основой для спецификации IEEE 802.3, которая появилась 1980-м году. После недолгих споров компании Digital Equipment Corporation, Intel Corporation и Xerox Corporation совместно разработали и приняли спецификацию (Version 2.0), которая была частично совместима с 802.3. На сегодняшний день Ethernet и IEEE 802.3 являются наиболее распространенными протоколами локальных вычислительных сетей (ЛВС). В настоящее Ethernet чаще всего используется для описания всех ЛВС работающих по принципу множественный доступ с обнаружением несущей (carrier sense multiple access/collision detection (CSMA/CD)), которые соответствуют Ethernet, включая IEEE 802.3.

Когда Ethernet был разработан, он должен был заполнить нишу между глобальными сетями, низкоскоростными сетями и специализированными сетями компьютерных центров, которые работали на высокой скорости, но очень ограниченном расстоянии. Ethernet хорошо подходит для приложений, где локальные коммуникации должны выдерживать высокие нагрузки при высоких скоростях в пиках.

Физическое подключение.

IEEE 802.3 определяет несколько различных стандартов физического уровня, в то время Ethernet определяет только один. Каждый из стандартов протокола физического уровня IEEE 802.3 имеет наименование, в котором отражены его важнейшие характеристики. Физические характеристики представлены в таблице 2.

Таблица 2 - Физические характеристики стандартов Ethernet Версии 2 и IEEE 802.3

Ethernet соответствует стандарту 10Base5 IEEE 802.3. Оба этих протокола определяют шинную топологию сети с соединительным кабелем между конечной станцией и действующей сетевой средой. В случае Ethernet, этот кабель называется трансиверный кабель. Трансиверный кабель соединяется с приемопередающим устройством, подключенным к физической сетевой среде.

Формат кадров стандартов Ethernet и IEEE 802.3 показан на рисунке 2.

Рис. 2 - Формат кадра сетей Ethernet.

Как кадр Ethernet, так и кадр IEEE 802.3 начинаются с чередующейся последовательности нулей и единиц, называемой преамбулой. Преамбула извещает принимающую станцию о начале кадра.

Байт перед адресом назначения в обоих кадрах является разделителем начала кадра - start-of-frame (SOF) delimiter. Этот байт заканчивается двумя единицами и служит для синхронизации приема всеми станциями сети.

Следующими полями в кадрах Ethernet и IEEE 802.3 являются поля адресов назначения (destination) и источника (source), длиной по 6 байтов. Адреса прошиваются в аппаратной части интерфейсных карт. Первые три байта определяют изготовителя интерфейсной карты, в то время как следующие три байта определяются самим изготовителем. Адрес источника всегда является адресом отдельного устройства, а адрес назначения может быть адресом отдельного устройства, групповым адресом, либо широковещательным.

В кадре Ethernet 2-байтовое поле, следующее за адресом источника, является полем типа. Это поле определяет протокол верхнего уровня, принимающий данные для последующей обработки, после того как завершится работа Ethernet.

В кадре IEEE 802.3 2-байтовое поле, следующее за адресом источника, является полем длины, показывающее количество байт данных, которые будут следовать за этим полем и предшествовать полю контрольной последовательности - frame check sequence(FCS).

Следующее за полем типа/длины поле содержит данные, передаваемые в кадре. После того как процессы физического и канального уровней завершатся, эти данные будут переданы протоколу верхнего уровня. В случае Ethernet протокол верхнего уровня определяется значением поля тип. В случае IEEE 802.3 тип протокола верхнего уровня определяется данными, содержащимися в кадре. Длина поля данных заполняется байтами набивки до минимальной длины кадра - 64 байта.

После поля данных следует 4-байтовое поле проверочной последовательности - FCS, содержащее величину проверки избыточности цикла - cyclic redundancy check (CRC). Эту величина вычисляется устройством-источником, а затем заново высчитывается устройством-приемником для проверки целостности информации.

2.4.2 Беспроводные локальные сети

Стандарт RadioEthernet IEEE 802.11 - это стандарт организации беспроводных коммуникаций на ограниченной территории в режиме локальной сети, т.е. когда несколько абонентов имеют равноправный доступ к общему каналу передач. 802.11 - первый промышленный стандарт для беспроводных локальных сетей (Wireless Local Area Networks), или WLAN. Стандарт был разработан Institute of Electrical and Electronics Engineers (IEEE), 802.11 может быть сравнен со стандартом 802.3 для обычных проводных Ethernet сетей .

Стандарт RadioEthernet IEEE 802.11 определяет порядок организации беспроводных сетей на уровне управления доступом к среде (MAC-уровне) и физическом (PHY) уровне. В стандарте определен один вариант MAC (Medium Access Control) уровня и три типа физических каналов.

Подобно проводному Ethernet, IEEE 802.11 определяет протокол использования единой среды передачи, получивший название carrier sense multiple access collision avoidance (CSMA/CA). Вероятность коллизий беспроводных узлов минимизируется путем предварительной посылки короткого сообщения, называемого ready to send (RTS), оно информирует другие узлы о продолжительности предстоящей передачи и адресате. Это позволяет другим узлам задержать передачу на время, равное объявленной длительности сообщения. Приемная станция должна ответить на RTS посылкой clear to send (CTS). Это позволяет передающему узлу узнать, свободна ли среда и готов ли приемный узел к приему. После получения пакета данных приемный узел должен передать подтверждение (ACK) факта безошибочного приема. Если ACK не получено, попытка передачи пакета данных будет повторена.

В стандарте предусмотрено обеспечение безопасности данных, которое включает аутентификацию для проверки того, что узел, входящий в сеть, авторизован в ней, а также шифрование для защиты от подслушивания.

На физическом уровне стандарт предусматривает два типа радиоканалов и один инфракрасного диапазона.

В основу стандарта 802.11 положена сотовая архитектура. Сеть может состоять из одной или нескольких ячеек (сот). Каждая сота управляется базовой станцией, называемой точкой доступа (Access Point, AP). Точка доступа и находящиеся в пределах радиуса ее действия рабочие станции образуют базовую зону обслуживания (Basic Service Set, BSS). Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему (Distribution System, DS), представляющую собой эквивалент магистрального сегмента кабельных ЛС. Вся инфраструктура, включающая точки доступа и распределительную систему, образует расширенную зону обслуживания (Extended Service Set). Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняется непосредственно рабочими станциями.

3. Разработка архитектуры информационной сети

3.1 Выбор топологии сети для проекта

Выбор используемой топологии зависит от задач, условий, возможностей сети. Влияние на итоговой выбор топологии также влияют следующие факторы:

· Проектируемая скорость передачи данных внутри сети;

· Среда передачи данных;

· Максимальная протяженность сети;

· Пропускная способность;

· Стоимость оборудования, поддерживающего выбранную топологию.

В техническом задании сформированы условия на построение сети со скоростью передачи данных между узлами до 100Мбит/с.

На сегодняшний день широко распространена и имеет хорошую поддержку среди сетевого оборудования топология Fast Ethernet. Данный стандарт предусматривает скорость передачи данных до 100 Мбит/сек и поддерживает два вида передающей среды - неэкранированная витая пара и волоконно-оптический кабель. Разновидности используемой среды для передачи данных представлены в таблице 3.

Таблица 3 - Классификация протоколов по типам передающей среды

Для выбора необходимого типа сети рассмотрим основные требования каждого стандарта, которые основаны на стандарте IEEE 802.3u.

Технология 100Base-TX характеризуется следующими требованиями:

· Сетевая топология должна быть физической топологией типа «звезда» без ответвлений или зацикливаний;

· Должен использоваться кабель категории 5, либо 5е;

· Класс используемых повторителей определяет количество повторителей, которые можно каскадировать;

· Диаметр сети не должен превышать 205 метров.

Технология 100Base-FX характеризуется следующими требованиями:

· Максимальное расстояние между двумя узлами сети может достигать двух километров при полнодуплексной связи;

· Расстояние между концентратором и конечным устройством не должно превышать 208 метров

Технология 100Base-Т4 характеризуется следующими требованиями:

· Длина сегмента между узлами ограничена расстоянием в 100 метров;

· Должен использоваться кабель категории 3, 4 или 5.

Технология 100BASE-FX позволяет располагать рабочие станции на большом удалении от центрального узла, но при этом в качестве передающей среды используется дорогостоящий оптический кабель, что резко увеличивает итоговый бюджет проекта сети. Так как решающим фактором принятия решения о выборе технологии является минимальная стоимость проекта, то в основу конфигурации локальной сети положена технология 100Base-TX.

Стандарт 100BASE-TX определяет сегмент Ethernet на основе неэкранированных витых пар (UTP) категории 5 и выше с топологией звезда. Суммарное количество кабеля, необходимого для объединения такого же количества компьютеров, оказывается гораздо больше, чем в случае шины. С другой стороны, обрыв кабеля не приводит к отказу всей сети, диагностика неисправности сети становится значительно проще. В сегменте 100BASE-TX передача сигналов осуществляется по двум витым парам проводов, каждая из которых передает только в одну сторону (одна пара - передающая, другая - принимающая). Кабелем, содержащим такие двойные витые пары, каждый из абонентов сети присоединяется к сетевому коммутатору.

3.2 Выбор способа управления сетью

Требования к организации сети определяются характером решаемых задач на предприятии. Решение о выборе того или иного способа управления принимается на основании подсчета рабочего парка машин организации и выбора структуры предприятия (рисунок 3)

Рис. 3 - Выбор способа управления сетью

Каждый компьютер должен быть подключен к локальной сети. Сотрудник магазина, в зависимости от выполняемых обязанностей, должен иметь доступ только к определённому набору данных - принцип вертикальной структуры предприятия. Такой подход к организации локальной сети возможно организовать только с помощью выделенного сервера.

Сервер позволяет разграничить права и обязанности локальных пользователей, обеспечить безопасный доступ к данным. Еще одна важная функция сервера - это централизованное управления локальной сетью.

3.3 Выбор передающей среды

Залогом успеха при проектировании локальной сети является грамотный выбор передающей среды, так как она определяет качество и надежность работы всей структуры в целом.

Передающая среда в локальных сетях представлена следующими каналами:

· медный кабель;

· волокно - оптический кабель;

· радиоканал;

· оптический канал;

· лазерный канал.

Выбор передающей среды обусловлен требованиями организации к проекту сети:

· Невысокая стоимость сети;

· Широкая инфраструктура сети;

· Способность к масштабированию.

Зачастую сеть доступа не может быть организована только за счет проводных технологий по ряду причин:

· Проблема прокладки кабеля из-за особенностей конструкции зданий, которая приводит к высокой стоимости сети;

· Высокая стоимость работ;

· Удалённость рабочих мест более чем на 100м, что накладывает ограничение на использование технологии 100BASE-TX.

В подобных случаях задача может быть решена за счет использования радиоканала, стандартом которого для локальных сетей стала технология Wi-Fi. Передача данных по радиоканалу во многих случаях надёжнее и дешевле, чем передача по коммутируемым каналам. При отсутствии развитой сетевой инфраструктуры использование радиосредств для передачи данных часто является единственно разумным вариантом организации связи. Сеть передачи с использованием точек доступа может быть развёрнута практически в любом здании.

Факторы, служащие основой для распространения радиосетей.

· Гибкость конфигурации. Все беспроводные сети поддерживают как режим инфраструктуры (подключение через точку доступа) так и режим "равный с равным" (без применения точки доступа). Добавление новых пользователей и установка новых узлов сети в любом месте не вызывают трудностей. Беспроводные сети могут быть установлены для временного использования в помещениях, где нет инсталлированной кабельной сети.

· Простота расширения сети. Беспроводные рабочие станции могут добавляться без ухудшения производительности сети. Перегрузки сети трафиком можно легко избежать добавлением точки доступа для сокращения времени отклика сети.

· Беспроводной доступ в Интернет. Подключение беспроводной точки доступа к коммутатору сети позволяет пользователям, имеющим на своих компьютерах адаптеры для приёма радиосигнала, разделять общий доступ в Интернет.

· Передающая среда. Сигнал распространяется с помощью маломощного шумоподобного сигнала, имея более десятка частотных каналов шириной 22 МГц в области 2,4 ГГц.

Приведем в таблице все аргументы при выборе передающей среды (таблица 4)

Таблица 4 - Аргументы при выборе передающей среды

Тип кабеля

Достоинства

Недостатки

· доступность по цене;

· доступность инструментов для установки разъемов (RJ45);

· удобство прокладки кабеля;

· относительная простота ремонта при повреждении;

· поддержка перспективных высокоскоростных сетей (Fast и Gigabit Ethernet) при использовании кабеля категории 5 или выше.

· относительно низкая устойчивость к электромагнитным помехам;

· сравнительно малые допустимые расстояния кабельных соединений, особенно для высокоскоростных сетей;

· невозможность использования во внешних участках соединений (между зданиями).

Экранированная витая пара STP (оплеточный экран)

· повышенная устойчивость к электромагнитным помехам по сравнению с неэкранированной витой парой

· несколько более высокая цена по сравнению с кабелем типа UTP.

Многомодовый оптоволоконный кабель

· практическая нечувствительность к внешним электромагнитным помехам и отсутствие собственного излучения;

· поддержка перспективных высокоскоростных сетей, в том числе на расстояниях, недоступных при использовании витой пары

· относительно высокая цена кабеля и сетевого оборудования;

· сложность установки (требуется специальный инструмент и высокая квалификация персонала);

· низкая ремонтопригодность;

· чувствительность к воздействиям факторов окружающей среды (могут вызвать помутнение оптоволокна)

Одномодовый оптоволоконный кабель

· улучшенные технические характеристики по сравнению с многомодовым кабелем (возможность увеличения скорости передачи или длины соединений).

· более высокая цена;

· сложная установка и ремонт.

Беспроводная технология

· устранение необходимости организации кабельной системы;

· мобильность рабочих станций (простота их перемещения внутри зданий

· относительно дорогое оборудование;

· сильная зависимость надежности соединения от наличия препятствий;

4. Проектирование проводной локальной сети (LAN)

Рассмотрев технические требования, переходим к проектированию участка локальной сети с использованием проводной технологии стандарта 802.3

Существует четыре основных правила корректной конфигурации Ethernet 802.3:

1. Количество узлов не должно превышать 1024.

2. Максимальная длина кабеля в сегменте определена соответствующей спецификацией.

3. Время двойного оборота сигнала между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала.

4. Сокращение межкадрового интервалапри прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала.

Правила корректного построения сегментов сетей Fast Ethernet включают:

· ограничения на максимальные длины сегментов, которые соединяют устройства - источники кадров (соединение DTE - DTE);

· ограничения на максимальные длины сегментов, соединяющих устройства-источники кадров (DTE) с портом повторителя;

· ограничения на общий максимальный диаметр сети;

· ограничения на максимальное число повторителей и максимальную длину сегмента, соединяющего повторители.

Приведем расчет самого длинного сегмента сети для определения верности построения локальной сети с использованием технологии Fast Ethernet (рисунок 4). Подробный план помещения представлен в приложении.

Посчитаем итоговую длину сегмента кабеля: 27 + 5 + 25 + 55= 112м. С учетом 10% запаса на установку розеток, протяжку и монтаж кабеля получим итоговую длину самого длинного сегмента около 123 м, что является предельным значением для технологии 100BASE-TX.

Построим техническую модель разрабатываемой локальной сети. СКС устанавливается на 1-м этаже 2-х этажного цехового здания, включающего цокольный этаж, с размерами в плане 55x25 м.

Рис. 4- Расчет самого длинного сегмента локальной сети

Высота этажа составляет 4.5 м, общая толщина перекрытий равна 50 см. На 1-м этаже использована цеховая планировка, которая представляет собой торгово-выставочный зал 55х15м, а также несколько комнат с фактическими размерами 5х4м. На цокольном этаже использована однотипная коридорная планировка рабочих помещений, которые имеют одинаковые размеры 11.5x11м. Коридор шириной 2 метра проходит по всей длине продольной оси этажа. 2-й этаж представлен открытым помещением с размерами 55x10м

В коридоре и во всех помещениях 1-го и цокольного этажей имеется подвесной потолок с высотой свободного пространства 35 см. Стены помещений изготовлены из армированного бетона и покрыты штукатуркой, толщина которой составляет 1 см. Каких-либо дополнительных каналов в полу и стенах, которые могут быть использованы для прокладки кабелей, строительным проектом здания не предусмотрено. Серверы и центральное оборудование ЛВС будут размещены в помещении серверной, то есть используется принцип одноточечного администрирования.

Создаваемая СКС должна обеспечить функционирование ЛВС: для этого на каждом рабочем месте монтируется информационная розетка с одним розеточным модулем. Для прокладки кабелей горизонтальной подсистемы вдоль коридора за подвесным потолком устанавливаются лотки. Расстояние от верхней кромки лотка до капитального потолка равно 25 см. Серверная располагается в центре этажа, и поэтому на каждую половину лотка укладываются кабели. В рабочих помещениях прокладка кабеля в соответствии с требованиями этой проектной работы будет выполняться в декоративных коробах (располагаются на высоте 1 м. от пола). Для перехода от лотков к коробам в стенках рабочих помещений сверлятся отверстия, в которые прокладывается кабель (рисунок 5)

Рис. 5 - Схема прокладки кабеля

Горизонтальная подсистема СКС строится на основе неэкранированных 4-х парных кабелей UTP категории 5e, проложенных по одному к каждому блоку розеток. Характеристики кабеля по затуханию, перекрестным наводкам и импедансу приведены в таблице:

Требуемая средняя длина кабеля(L cp) рассчитывается с использованием эмпирической формулы, исходя из предположения, что рабочие места распределены по обслуживаемой площади равномерно:

Lcp =(Lmax+Lmin)/2,

где Lmin и Lmax - соответственно длины кабельной трассы от точки размещения кроссового оборудования до информационного разъема самого близкого и самого далекого рабочего места, посчитанные с учетом технологии прокладки кабеля, всех спусков, подъемов, поворотов и особенностей здания. При определении длины трасс необходимо добавить технологический запас величиной 10% от Lcp и запас Х для процедур разводки кабеля в распределительном узле и информационном разъеме; так что длина трасс L составит:

L= (1,1*Lcp+X)*N,

где N - количество розеток.

Рассчитаем необходимое количество кабеля. Дробные значения округляем до целых.

Для цокольного этажа Lmin и Lmax равны соответственно 20 и 123 метров.

Lcp = (20+123)/2 = 71м.

L = (1,1*71+2)*11= 881 метр кабеля.

Известно, что в бухте (катушке) 305 метров кабеля. Тогда для создания горизонтальной подсистемы необходимо 3 бухты.

Подсистема управления включает в себя кроссовое оборудование для коммутации сигналов, передаваемых по медному кабелю.

Коммутация рабочих мест осуществляется при помощи специальных кросс-кабелей к главному кроссовому элементу (коммутатор). Применение такой схемы обеспечивает более безопасный метод коммутации активного оборудования.

В помещении серверной согласно выбранному оборудованию устанавливается один открытый 19” телекоммуникационный шкаф (стойка) высотой 42U, в котором размещаются:

· сетевой коммутатор D-Link DES-1024D;

· сервер;

· 2 ИБП APC Smart-UPS RM 2U

· маршрутизатор Cisco 2811

Для коммутации шкаф укомплектовывается патч-кордами длиной 0,5, 1 и 1,5м.

Получившаяся топология ЛВС приведена на рисунке 6.

Структурированная кабельная система, являющаяся единой транспортной средой для различных систем и объединяющая в себе ранее разрозненные сети, требует изменения существующих ранее принципов организации эксплуатации и технического обслуживания локальных, телефонных и прочих сетей.

Разработанный проект охватывает не только общую кабельную систему, но и интегрированную локальную сеть, которую можно подразделить на следующие подсистемы:

· кабельное хозяйство;

· главное активное оборудование (маршрутизатор, коммутаторы и концентраторы);

· основное вычислительное оборудование (серверы с дополнительным оборудованием, подключенным к ним);

· периферийное активное оборудование (персональные компьютеры, телефонные аппараты и др.).

Рис. 6 - Топология проводной ЛВС

Основной задачей обслуживающего и ремонтно-технического персонала является устранение возникающих неисправностей в различных подсистемах. Эти функции обычно совмещались с другими обязанностями администратора, что приводило к сложности выполнения ремонтных работ в случае аврала.

В случае инсталляции структурированной кабельной системы высокое качество всех компонентов, тестирование всей кабельной системы на соответствие категории 5е после проведения инсталляции сводят к минимуму вероятность возникновения аварии в кабельном хозяйстве.

5. Проектирование беспроводной локальной сети (WLAN)

5.1 Условия развёртывания сетей Wi-Fi

При принятии решений относительно развертывания беспроводных LAN (WLAN) необходимо учитывать:

· особенности работы протоколов передачи данных 802.11;

· поведение мобильных узлов;

· вопросы защиты;

· качество связи (QoS);

· приложения, используемые беспроводными клиентами.

Физический аспект выполнения картирования места работ дает возможность понять, какую зону покрытия имеет каждая точка доступа, каково количество точек доступа, необходимое для покрытия заданной области, и установить параметры каждого канала и излучаемую мощность.

5.2 Разработка архитектуры с описанием основных параметров проектируемой WLAN

кабельный локальный сеть сервер

Возможны несколько вариантов построения беспроводной сети. В простейшем случае она может быть построена на беспроводных сетевых адаптерах с использованием точки доступа в качестве базовой станции, что обеспечивает минимальную стоимость, но при этом ограниченный радиус действия и зависимость скорости соединения от количества клиентов и их удаленности от точки доступа. Другой вариант это развертывание распределённой беспроводной сети на базе двух или более точек доступа. Этот вариант обеспечивается так называемый «бесшовный» роуминг, когда абонент, покидая зону действия одной точки доступа, автоматически подключается к зоне действия другой. При добавлении в структуру сети беспроводных коммутаторов или маршрутизаторов, получаем сеть на основе централизованной архитектуры, но это вносит дополнительные затраты на приобретение сетевого оборудования, зато позволяет достичь максимальной производительности и большей эффективности. Такие устройства могут использоваться как для создания каналов "точка-точка", так и для развертывания масштабных сетей сложной топологии с возможностью многократной ретрансляции сигналов. Однако данная реализация в условиях проекта является нецелесообразной, так как беспроводная сеть будет использоваться как дополнение к уже существующей проводной локальной сети. Также последний вариант построения является самым дорогостоящим.

Наконец, то, что больше всего интересует вас и пользователей вашей WLAN, - это такие характеристики беспроводных устройств, как зона уверенного приема и пропускная способность. Они напрямую связаны с радиусом действия и скоростью передачи данных. Радиус действия - это расстояние, на котором потери на трассе становятся равными коэффициенту усиления системы.

При развертывании WLAN в помещениях главной сложностью является учет прохождения сигнала через перегородки, стены и железобетонные перекрытия (таблица 6). Любые преграды уменьшают уровень сигнала, увеличивают потери и сказываются на скорости передачи данных. Радиоэфир довольно чувствителен к различного рода помехам. Условия приема и передачи радиосигнала ухудшают не только физические препятствия, также помехи создают и различные радиоизлучающие приборы (таблица 5).

Таблица 5 - Ослабление сигнала, вызванное различными препятствиями

Препятствие

Ослабление, дБ

Эффективная дальность, %

Открытое пространство

Окно (неметаллизированная краска)

Окно (металлизированная краска)

Тонкая стена

Средняя стена (дерево)

Толстая стена (твердый материал толщиной 15 см)

Очень толстая стена (твердый материал толщиной 30см)

Пол / потолок (армированный бетон)

Проблема качества сигнала не решится простым увеличением мощности точек доступа. Такой подход не гарантирует повышения качества связи, а скорее наоборот - ведет к его ухудшению, так как создает массу помех в том диапазоне частот, который используют другие точки доступа. Так как точки доступа 802.11 предоставляют разделяемую среду, то в определенный момент времени лишь одна из них может вести передачу данных. Как следствие, масштабирование таких сетей ограничено. Единственный способ точно определить потери на трассе в конкретных условиях эксплуатации - это провести картирование места развертывания сети. Однако все равно полезно знать механизмы, которые влияют на характеристики системы, и то, как можно определить коэффициент усиления вашей системы и сравнить его с аналогичным параметром других систем.

Дальность расстояния определяется характеристиками помещений, в которых развертывается беспроводная сеть. Так, производители указывают максимальное значение скорости при условии прямой видимость между точкой доступа и клиентом. Одна из особенностей обмена данными в беспроводных сетях заключается в том, что при ухудшении качества связи скорость передачи автоматически падает, но падает не плавно, а до следующего фиксированного значения, то есть дискретно. В общем случае скоростной ряд для 802.11g выглядит следующим образом: 1, 2, 5.5, 11, 22, 54 Мбит/с. При улучшении качества связи скорость вновь поднимается до оптимального на текущий момент значения.

Подключение и настройка беспроводных точек доступа не является простой процедурой. Однако, только грамотное расположение точки доступа определяет оптимальной диапазон передающего устройства.

Для обеспечения уверенного приёма сигнала точки доступа должны находиться на оптимальном уровне, обеспечивающем равномерное покрытия зоны этажа, а также должны находиться друг от друга на значительном расстоянии, чтобы не быть подверженными взаимному влиянию.

Для реализации совместной работы точек доступа следует выбрать принцип объединения их в единую архитектуру. Существует 2 вариант объединения, рассмотренные в таблице 6.

Таблица 6 - Возможные варианты реализации архитектуры WLAN

объединения ТД

Проводной

Беспроводной

объединения

ТД сегментами кабеля объединяются с маршрутизатором напрямую, либо через коммутаторы

ТД по радиоканалу объединяются с центральной ТД («мост») по принципу «точка - точка» или «точка - несколько точек», которая взаимодействует с маршрутизатором

Достоинства

централизованная архитектура, возможность «бесшовного» роуминга

отказ от проводов

Трудности

требуется прокладка кабельной системы

требуется настройка каналов для корректной работы, дабы исключить перекрываемость зон обслуживания

Для обеспечения беспроводного соединения точек доступа с коммутационным узлом необходима поддержка 2-х канальной работы точек доступа. Один из каналов обеспечивает постоянное соединение с маршрутизатором, а второй - производит вещание данных в сеть. Данная реализация значительно требует использования дорогостоящих ТД, цена которых не может окупить прокладку кабеля до каждой их точек. По этому причине объединение ТД с сетевым узлом будет производиться с помощью сетевого кабеля.

Определившись с основными параметрами проектируемой сети, рассмотрим схему реализации беспроводной сети как дополнение основной проводной локальной сети (рисунок 7).

Рис. 7 - Реализация беспроводного сегмента в рамках LAN.

Проанализировав возможную реализацию сети, сразу встаёт вопрос об отдельном питании точек доступа, которые обычно располагают как можно выше в пределах этажа. Подводить питание сети 220В является довольно сложной процедурой, за исключением тех случаев, когда розетки 220В уже имеются на стенах. Выходом из данной ситуации является подключение к сети еще одного коммутатора с поддержкой технологии Power over Ethernet. Данная технология позволяет подавать питающее напряжение устройствам через сетевой кабель Ethernet. Сетевой коммутатор необходимо расположить на одинаковом удалении от точек доступа для минимизации прокладки кабеля между точкой доступа и коммутатором (рисунок 8)

Рис. 8 - Реализация беспроводного сегмента в рамках LAN с дополнительным коммутатором.

Рассмотрев реализацию беспроводного сегмента в рамках LAN, следует представить реализацию комбинированной локальной сети организации (рисунок 9).

Рис. 9 - Реализация комбинированной локальной сети.

6. Выбор сетевого оборудования

Выбор сетевого оборудования - один из самых ответственных шагов в реализации проекта. При выборе необходимо учитывать множество факторов:

· уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

· скорость передачи информации и возможность ее дальнейшего увеличения;

· метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);

· разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

· стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, коммутаторов, маршрутизаторов).

Заранее продуманная и правильным образом сконфигурированная сетевая инфраструктура позволит в дальнейшем при замене или модернизации оборудования не задумываться о качестве работы информационной сети.

6.1 Конфигурирование сервера

Сервер построен на основе серверной архитектуры Intel с использованием серверного чипсета Intel 3000 с частотой системной шины 800/1066MHz, с поддержкой работы двухъядерного процессора Intel Pentium D, использованием памяти unbuffered SDRAM DDR2-533/667 (до 8GB), шин PCI-Express x8 и PCI-Express x4. Сервер ориентирован на использование дисковой подсистемы на базе фиксированных SAS HDD.

Сервер обладает минимальной стоимостью и компактностью, удобством обслуживания, эксплуатационной надежностью, средствами автоматической диагностики и устранения неисправностей. Изготавливается в корпусе Rackmount высотой 1U, что позволяет установить его в стандартную 19-ти дюймовую стойку для сервера (рисунок 10)

Основные характеристики:

· процессор: Intel® Pentium D 3.00 GHZ;

· ОЗУ: 4Gb unbuffered SDRAM DDR2-667;

· RAID-контроллер: Adaptec ASR-2405 PCI-E x8, 4-port SAS/SATA, RAID 0/1/10/JBOD, Cache 128Mb;

· дисковый массив: 4 x 500GB SAS hard drive, RAID 0+1;

· накопитель: DVD-RW/CD-RW SATA

· источник питаниямощностью 350W.

Рис. 10 - Сервер на базе серверного чипсета Intel 3000.

Приведённая конфигурация подобрана из потребности при минимальной цене получить сервер, который сможет справляться с поставленными перед ним задачами. Сервер может использоваться для следующих служб:

· файл-сервер;

· сервер доменных имен;

· брандмауэр;

· сервер DHCP;

· локальный DNS с перенаправлением неизвестных запросов на вышестоящий DNA.

6.2 Выбор активного сетевого оборудования

Приведем список активного сетевого оборудования, использующегося для организации сети:

а) Коммутатор 10/100 Мбит/с с 24 портами D-Link DES-1024D (рисунок 11).

Рис. 11- Коммутатор D-Link DES-1024D.

Неуправляемый Коммутатор DES-1024D 10/100Mbps разработан для повышения производительности рабочих групп и обеспечения высокого уровня гибкости при построении сети. Мощный, но простой в использовании, этот коммутатор позволяет пользователям легко подключаться к любому порту как на скорости 10Mbps, так и 100Mbps для увеличения полосы пропускания, уменьшения времени отклика и обеспечения требованиям по высокой загрузке.

Коммутатор имеет 24 порта 10/100Mbps, позволяя рабочим группам гибко совмещать Ethernet и Fast Ethernet. Эти порты обеспечивают определение скорости и автоматически переключаются как между 100BASE-TX и 10BASE-T, так и между режимами полного или полудуплекса.

Все порты поддерживают контроль за передачей трафика - flow control. Эта функции минимизирует потерю пакетов, передавая сигнал коллизии, когда буфер порта полон.

Корпус коммутатора выполнен в 19-ти дюймовом формате, что позволяет установить его в одну стойку с сервером.

б) Коммутатор D-Link DES-1008P (рисунок 12).

Рис. 12 - Коммутатор D-Link DES-1008.

8-портовый настольный коммутатор DES-1008P D-Link с 8 портами РоЕ позволяет домашним и офисным пользователям легко подключать и подавать питание по Power over Ethernet (PoE) на устройства, такие как беспроводные точки доступа (АР), IP-камеры и IP-телефоны, а также подключать к сети другие Ethernet-устройства (компьютеры, принтеры, NAS). Разработанный специально для домашних пользователей и малого бизнеса, этот компактный коммутатор РоЕ работает почти бесшумно, что позволяет поместить его практически в любой комнате или офисе.

DES-1008P имеет 4 порта 10/100Base-TX с поддержкой протокола РоЕ. На каждый порт PoE подаётся питание с мощностью до 15,4 Вт, в итоге коммутатор может подавать питание до 123Вт, что дает возможность пользователям подключить к DES-1008P устройства, совместимые с 802.3af. Это позволяет размещать устройства в труднодоступных местах (потолки, стены и т.д.) вне зависимости от расположения розеток питания и минимизировать прокладку кабеля. Для подачи питания через DES-1008P на устройства, не совместимые с 802.3af PoE, рекомендуется использовать PoE-адаптеры (например, DWL-P50).

Установка устройства происходит легко и быстро и не требует дополнительных настроек. Поддержка автоматического определения полярности MDI/MDI-X на всех портах исключает необходимость в использовании кроссовых кабелей для подключения к другому коммутатору или концентратору. Функция автосогласования скорости на всех портах автоматически определяет скорость (10Мбит/с или 100Мбит/с) для обеспечения совместимости и оптимальной производительности. При включении устройств 802.3af DES-1008P автоматически выбирает подходящее питание. Кроме того, DES-1008P содержит диагностические светодиодные индикаторы для отображения статуса и активности портов. Это позволяет быстро обнаружить и исправить возникшие проблемы в сети. Благодаря фильтрации скорости и методу коммутации store-and-forward, DES-1008P поддерживает максимальную производительность сети с минимальными ошибками при передаче пакетов. Благодаря портам РоЕ, высокой производительности и простоте использования, 8-портовый коммутатор D-Link с 4 портами РоЕ DES-1008P является идеальным выбором для подключения устройств РоЕ в домашних сетях и сетях малых предприятий.

в) Точка доступа D-Link AirPremier DWL-3200AP (рисунок 13).

Рис. 13 - Точка доступа D-Link AirPremier DWL-3200AP.

Мощная и надежная внутриофисная точка доступа D-Link AirPremier DWL-3200AP предназначена для сетей масштаба предприятия и предлагает богатый набор функций для построения управляемых и защищенных беспроводных локальных сетей. Точка доступа поддерживает стандарт Power over Ethernet (PoE). В комплект поставки точки доступа входят две антенны с высоким коэффициентом усиления 5 dBi, что позволяет обеспечить оптимальный радиус действия беспроводной сети.

DWL-3200AP помещена в металлический корпус с вентиляцией, что соответствует нормам пожарной безопасности и гарантирует защиту от перегрева. Точка доступа поддерживает стандарт 802.3af Power over Ethernet (PoE), что позволяет устанавливать это устройство даже в тех местах, где силовые розетки питания не доступны.

г) Маршрутизатор Cisco 2811

Рис. 14- Cisco 2811

Функции Cisco 2811

* Одновременная работа различных сервисов (например, обеспечения безопасности и голосовой связи) со скоростью физической линии, а также расширенных сервисов в нескольких каналах T1/E1/xDSL WAN

* Отличная защита инвестиций благодаря повышенной производительности и модульности

* Отличная защита инвестиций благодаря повышенной модульности

* Увеличенная плотность благодаря четырем слотам высокоскоростных интерфейсных карт распределенных сетей

Подобные документы

    Установка структурированной кабельной системы в одноэтажном офисном здании. Расчет количества информационных розеток. Администрирование компьютерной сети и выбор топологии. Основные задачи оптимизации локальных сетей. Проектирование аппаратной станции.

    курсовая работа , добавлен 25.03.2015

    Сравнительный анализ различных топологий сетей. Исследование элементов структурированной кабельной системы. Методы доступа и форматы кадров технологии Ethernet. Локальные сети на основе разделяемой среды: технология TokenRing, FDDI, Fast Ethernet.

    курсовая работа , добавлен 19.12.2014

    Этапы проектирования структурированной кабельной системы. Выбор топологии сети, среды передачи и метода доступа. Администрирование и управление структурированной кабельной системы. Физическая среда передачи в локальных сетях. Особенности Windows Server.

    курсовая работа , добавлен 27.11.2011

    Выбор и обоснование технологий построения локальных вычислительных сетей. Анализ среды передачи данных. Расчет производительности сети, планировка помещений. Выбор программного обеспечения сети. Виды стандартов беспроводного доступа в сеть Интернет.

    курсовая работа , добавлен 22.12.2010

    Знакомство с понятием структурированной кабельной системы: ее подсистемы, типы кабелей, проектирование плана здания, серверной, кампуса. Различные технологии передачи данных, составление схемы соединений. Расчет стоимости оборудования, тест сети.

    курсовая работа , добавлен 13.12.2013

    Топология и принципы администрирования кабельной сети, выбор метода подключения сетевого оборудования. Проектирование локальной вычислительной сети. Оценка затрат на внедрение структурированной кабельной системы и системы бесперебойного питания.

    дипломная работа , добавлен 28.10.2013

    Обзор и анализ возможных технологий построения сети: Ethernet, Token Ring, FDDI, Fast Ethernet. Основные виды кабелей и разъемов. Выбор архитектуры, топологии ЛВС; среды передачи данных; сетевого оборудования. Расчет пропускной способности локальной сети.

    дипломная работа , добавлен 15.06.2015

    Разработка проекта компьютерной сети на основе технологии Fast Ethernet. Выбор топологии сети, кабельной системы, коммутатора, платы сетевого адаптера, типа сервера и его аппаратного обеспечения. Характеристика существующих мобильных операционных систем.

    курсовая работа , добавлен 06.08.2013

    Схемы взаимодействия устройств, методы доступа и технология передачи данных в информационной сети. Ethernet как верхний уровень интегрированной системы автоматизации. Разработка конфигурации сервера, рабочих станций и диспетчерской станции предприятия.

    курсовая работа , добавлен 30.04.2012

    Анализ зоны проектирования, информационных потоков, топологии сети и сетевой технологии. Выбор сетевого оборудования и типа сервера. Перечень используемого оборудования. Моделирование проекта локальной сети с помощью программной оболочки NetCracker.

Инфраструктура информационных технологий, главным образом, базируется на локальной вычислительной сети, поэтому, от того насколько качественно будет спроектирована и создана локальная вычислительная сеть (ЛВС) , зависят показатели качества функционирования инфраструктуры в целом.

Специалисты ООО «Моспроект-Инжиниринг» всегда готовы выполнить для Вас проектирование ЛВС Вашего офиса, предприятия, иных объектов, что в свою очередь позволит Вам объединить в одну целую систему рабочие места, офисную технику, различные установки и элементы, включающие в себя ЭВМ и микропроцессоры.

Процесс создания ЛВС включает в себя три стадии:

Проектирование ЛВС с учетом необходимых нормативных документов, согласование проектной документации с заказчиком и с различными инстанциями (при необходимости);
- сборка, установка и объединение в единое целое элементов сети ЛВС;
- пуско-наладочные работы и передача ЛВС в пользование заказчику.
При подготовке проектной документации инженеры-проектировщики ООО «Моспроект-Инжиниринг» учитывают возможность применения в проектируемой сети ЛВС комплектующих различных производителей с мировыми именами, таких как Hyperline, Krone и других производителей.
Специалисты ООО «Моспроект-Инжиниринг» оперативно проведут все необходимые подготовительные (предпроектные) работы, а именно, выполнят обследование помещений, а при необходимости обследование прилегающей территории, инженерные изыскания, составят планы расположения рабочих мест, оргтехники, серверов, различных элементов сети и прочих приборов.
При необходимости объединения ЛВС отдельных подразделений, филиалов, строений в единую территориальную распределенную сеть, специалисты ООО «Моспроект-Инжиниринг» готовы предложить Вам и такого типа проекты, а именно - проектирование территориальных распределительных сетей. При проектировании ЛВС, по инициативе заказчика, наши специалисты предусмотрят возможность подключения к ЛВС по принципу удаленного доступа оборудования специалистов - фрилансеров, работающих удаленно, также удаленное подключение может потребоваться и штатным сотрудникам, находящихся вне офиса, например в командировках, на различных объектах или в полевых условиях. Удаленный доступ к ЛВС предусматривается с учетом норм кибербезопасности, установленных организацией заказчика.

Что представляет собой ЛВС в повседневной жизни предприятия/офиса?

ЛВС представляет собой систему высокотехнологичной, "умной" связи, объединяющую в единую целую систему персональные компьютеры, офисную технику, серверы, телефонию, системы мониторинга, охраны, учета и контроля доступа, системы управления, прочих систем и элементов, включающих в себя различные процессоры, микропроцессоры, чипы, аппараты, контроллеры, панели управления, программное обеспечение. Назначение ЛВС на предприятии, в офисе, в иных структурах заключается в безопасной, оперативной и синхронной передачи данных различного типа (текст, графика, звук, видеоизображение и другие) между персональными компьютерами и серверами, иными элементами, взаимодействующими с системой. ЛВС позволяет принимать, обрабатывать и выводить на экраны ПК различного рода информацию с подключаемых к системе агрегатов, приборов, контроллеров, пультов управления, сенсоров, датчиков, прочей аппаратуры, а также управлять ими, задавая нужные параметры. ЛВС дает возможность быстрого и безопасного доступа к базам данных, а также управления ими. ЛВС - это еще и возможность создания на ее базе почтового хостинга, то есть корпоративной почты, относительно безопасного и подконтрольного доступа персонала к внешним сетевым ресурсам (интернет).
Возможностей и достоинств ЛВС великое множество, их можно продолжать перечислять еще долго, но основные моменты, на наш взгляд, мы Вам рассказали. Однако необходимо понимать, что для корректной и бесперебойной работы системы ЛВС необходимо администрирование, и чем больше система, тем сложнее ее обслуживание. Для этой цели предусмотрены специальные программные продукты, например - операционные системы, устанавливаемые на серверы. Такие программные продукты производят многие компании с мировыми именами, такие как Microsoft, Apple и другие. Стоит отметить, что для полноценной защиты информации, необходимо правильно подобрать программы защиты и мониторинга состояния ЛВС - в подобных вопросах Вас грамотно проконсультируют специалисты ООО «Моспроект-Инжиниринг».

ЛВС состоит из множества самостоятельных, отдельных систем, а также подсистем, сегментов, модулей и элементов, назовем их для удобства - единицами ЛВС. Так вот, проектирование ЛВС представляет собой разработку как бы отдельных проектов в отношении каждой единицы ЛВС, в последствии сведенных в общий проект, по принципу «от частного проекта к общему». Множество единиц ЛВС мы проектируем сами, например отдельные системы, подсистемы, также в наших проектах мы предусматриваем необходимость или возможность применения стандартных единиц ЛВС, то есть разработки различных производителей с известными именами, речь идет о готовых модулях, серверах, процессорах, микропроцессорах, контроллерах, панелях управления, различных аппаратах, узлах и так далее, в том числе и о программном обеспечении. Специалисты компании ООО «Моспроект-Инжиниринг» помогут Вам подобрать готовые единицы ЛВС от мировых производителей, либо разработают их самостоятельно, затем выполнят общее проектирование, основываясь на выбранном.

По завершении проектных работ в отношении ЛВС, заказчик получает следующие проектные документы, а именно:

Схема, отражающая взаимодействие между электронно-вычислительными машинами ЛВС и программным продуктом
- схема, отражающая структурированную кабельную систему (СКС), иными словами - документ, включающий в свой состав графическую информацию о телефонной сети здания и прокладках ЛВС вместе с оборудованием. Графическая информация о телефонизации здания и собственно ЛВС отражена в настоящем документе в виде аппликации на плане здания (офиса, завода, магазина и т.д.). Отметим, что подготовка схемы СКС требует больших трудозатрат по сравнению с остальными работами, в связи с чем рассматривается отдельно от других работ.
Проектные работы над взаимодействием между электронно-вычислительными машинами ЛВС.
В результате составляется схема, отражающая развертывание ЛВС, иными словами, схема, на которую нанесены условные обозначения компьютеров, иной техники, с указанием инсталлированного программного продукта, а также формирующихся в этом случае потоков информации.
Проектные работы над кабельными системами ЛВС.
Формируется пакет документации, в состав которого входят документы, необходимые при проектировании ЛВС в том или ином здании.
Наименование документов, входящий в пакет, и их содержание должны строго соответствовать регламенту ГОСТ Р 21.1703-2000.
Проект ЛВС оформляется строго по рекомендациям исходящих из ГОСТ 21.101-97.
Отсутствие проекта, просто-напросто, не позволит Вам смонтировать ЛВС, если сеть охватывает большие площади, большое здание, тем более, если речь идет о группе зданий.

Наиболее важными разделами проекта ЛВС считаются:

1. Схема, отражающая структуру ЛВС;
2. Рабочая документация (графическая) - схемы, чертежи, экспликации и т.д.;
3. Классификация оборудования.
Схема, отражающая структуру ЛВС, предназначена главным образом для общей визуализации системы коммуникаций. Рабочая документация в виде графических документов предназначена для корректной сборки ЛВС. Классификация оборудования важна для формирования сметных расчетов, контрактов (договоров), актов, технических заданий на монтажные работы, иных документов, также для оформления договоров на изготовление и поставку оборудования, для осуществления общей сборки ЛВС.

РАЗРАБОТКА ПРОЕКТОВ ЛВС - ЭТО НАЧАЛЬНАЯ И НЕОБХОДИМАЯ СТАДИЯ ПО СОЗДАНИЮ НАДЕЖНОЙ ОПОРЫ БЕСПЕРЕБОЙНОГО ФУНКЦИОНИРОВАНИЯ ИНФРАСТРУКТУРЫ ПРЕДПРИЯТИЯ, ОФИСА И МНОГИХ ДРУГИХ ОБЪЕКТОВ.

Специалисты компании ООО «Моспроект-Инжиниринг» всегда готовы предложить Вам множество версий проектных решений, учитывая Ваши пожелания, исходя из Ваших финансовых возможностей, а также технические характеристики Вашего помещения.

Федеральное агентство по образованию

Государственное образовательное учреждение

Уфимский государственный авиационный технический университет

Кроме основных компонент сеть может включать в состав блоки бесперебойного питания, резервные приборы, современные динамически распределяемые объекты и различные типы серверов (такие как файл-серверы, принт-серверы или архивные серверы).

Создавая ЛВС, разработчик стоит перед проблемой: при известных данных о назначении, перечне функций ЛВС и основных требованиях к комплексу технических и программных средств ЛВС построить сеть, то есть решить следующие задачи:

Определить архитектуру ЛВС: выбрать типы компонент ЛВС;

Произвести оценку показателей эффективности ЛВС;

Определить стоимость ЛВС.

При этом должны учитываться правила соединения компонентов ЛВС, основанные на стандартизации сетей, и их ограничения, специфицированные изготовителями компонент ЛВС.

Конфигурация ЛВС для АСУ существенным образом зависит от особенностей конкретной прикладной области. Эти особенности сводятся к типам передаваемой информации (данные, речь, графика), пространственному расположению абонентских систем, интенсивностям потоков информации, допустимым задержкам информации при передаче между источниками и получателями, объемам обработки данных в источниках и потребителях, характеристикам абонентских станций, внешним климатическим, электромагнитным факторам, эргономическим требованиям, требованиям к надежности, стоимости ЛВС и т. д.

Исходные данные для проектирования ЛВС могут быть получены в ходе предпроектного анализа прикладной области, для которой должна быть создана АСУ. Эти данные уточняются затем в результате принятия решений на этапах проектирования ЛВС и построения все более точных моделей АСУ, что позволяет в «Техническом задании на ЛВС» сформулировать требования к ней. Лучшая ЛВС - это та, которая удовлетворяет всем требованиям пользователей, сформулированным в техническом задании на разработку ЛВС, при минимальном объеме капитальных и эксплуатационных затрат.

ЦЕЛЬ РАБОТЫ

Получение навыков выбора топологии, элементов локальной вычислительной сети, а так же расчета времени задержки сигнала.


КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Проектирование конфигурации ЛВС относится к этапу проектирования технического обеспечения автоматизированных систем и осуществляется на этом этапе после распределения функции автоматизированной системы по абонентским станциям ЛВС, выбора типов абонентских станций, определения физического расположения абонентских станций.

Задание на проектирование включает требования к ЛВС, указания о доступных компонентах аппаратных и программных средств, знания о методах синтеза и анализа ЛВС, предпочтения и критерии сравнения вариантов конфигурации ЛВС. Рассмотрим варианты топологии и состав компонент локальной вычислительной сети.

1. Топология ЛВС.

Топология сети определяется способом соединения ее узлов каналами связи. На практике используются 4 базовые топологии:

Звездообразная (рис. 1);

Кольцевая (рис. 2);

Шинная (рис. 3);

Древовидная (рис. 1*);

Ячеистая (рис. 4).

Топологии вычислительных сетей могут быть самыми различными, но для локальных вычислительных сетей типичными являются всего три: кольцевая, шинная, звездообразная. Иногда для упрощения используют термины - кольцо, шина и звезда.

Древовидная топология (иерархическая, вертикальная). В этой топологии узлы выполняют другие более интеллектуальные функции, чем в топологии «звезда». Сетевая иерархическая топология в настоящее время является одной из самых распространенных. ПО для управления сетью является относительно простым, и эта топология обеспечивает точку концентрации для управления и диагностирования ошибок. В большинстве случаев сетью управляет станция A на самом верхнем уровне иерархии, и распространение трафика между станциями также инициируется станцией А. Многие фирмы реализуют распределенный подход к иерархической сети, при котором в системе подчиненных станций каждая станция обеспечивает непосредственное управление станциями, находящимися ниже в иерархии. Из станции A производится управление станциями B и C. Это уменьшает нагрузку на ЛВС через выделение сегментов.

Ячеистая топология (смешанная или многосвязная). Сеть с ячеистой топологией представляет собой, как правило, неполносвязанную сеть узлов коммутации сообщений (каналов, пакетов), к которым подсоединяются оконечные системы. Все КС являются выделенными двухточечными. Такого рода топология наиболее часто используются в крупномасштабных и региональных вычислительных сетях, но иногда они применяются и в ЛВС. Привлекательность ячеистой топология заключается в относительной устойчивости к перегрузкам и отказам. Благодаря множественности путей из станции в станцию трафик может быть направлен в обход отказавших или занятых узлов.

Топология сети влияет на надежность, гибкость, пропускную способность, стоимость сети и время ответа (см. Приложение 1 ).

Выбранная топология сети должна соответствовать географическому расположению сети ЛВС, требованиям, установленным для характеристик сети, перечисленным в таблице. Топология влияет на длину линий связи.

Рис.1. Топология звезда Рис.2 Топология кольцо

https://pandia.ru/text/78/549/images/image004_82.gif" width="279" height="292 src=">

Рис. 1* Топология распределенная звезда

Рис.3 Топология

линейная шина

прозрачное" соединение нескольких локальных сетей либо нескольких сегментов одной и той же сети, имеющих различные протоколы. Внутренние мосты соединяют большинство ЛВС с помощью сетевых плат в файловом сервере. При внешнем мосте используется рабочая станция в роли сервисного компьютера с двумя сетевыми адаптерами от двух различных, однако однородных вычислительных сетей.

В том случае, когда соединяемые сети отличаются по всем уровням управления, используется оконечная система типа шлюз, в которой согласование осуществляется на уровне прикладных процессов. С помощью межсетевого шлюза соединяются между собой системы, использующие различные операционные среды и протоколы высоких уровней

9. Исходные данные к заданию

Пользователи: студенты, преподаватели, инженеры, программисты, лаборанты, техники кафедры автоматизированных систем управления УГАТУ.

Функции:

1) реализация учебного процесса на лабораторных, практических занятиях, выполнение курсового и дипломного проектирования;

2) организация учебного процесса, подготовка к проведению занятий, разработка методического обеспечения;

3) разработка программного обеспечения для работы в сети;

4) профилактика и ремонт оборудования.

Расчет стоимость оборудования ЛВС:

ЛВС должна допускать подключение большого набора стандартных и специальных устройств, в том числе: ЭВМ, терминалов, устройств внешней памяти, принтеров, графопостроителей, факсимильных устройств, контрольного и управляющего оборудования, аппаратуры подключения к другим ЛВС и сетям (в том числе и к телефонным) и т. д.

ЛВС должна доставлять данные адресату с высокой степенью надежности (коэффициент готовности сети должен быть не менее 0.96), должна соответствовать существующим стандартам, обеспечивать "прозрачный" режим передачи данных, допускать простое подключение новых устройств и отключение старых без нарушения работы сети длительностью не более 1 с; достоверность передачи данных должна быть не больше +1Е-8.

11. Перечень задач по проектированию ЛВС

11.1. Выбрать топологию ЛВС (и обосновать выбор).

11.2. Нарисовать функциональную схему ЛВС и составить перечень аппаратных средств.

11.3. Выбрать оптимальную конфигурацию ЛВС.

11.4. Произвести ориентировочную трассировку кабельной сети и выполнить расчет длины кабельного соединения для выбранной топологии с учетом переходов между этажами. Поскольку существуют ограничения на максимальную длину одного сегмента локальной сети для определенного типа кабеля и заданного количества рабочих станции, требуется установить необходимость использования повторителей.

11.5. Определить задержку распространения пакетов в спроектированной ЛВС.

Для расчетов надо выделить в сети путь с максимальным двойным временем прохождения и максимальным числом репитеров (концентраторов) между компьютерами, то есть путь максимальной длины. Если таких путей несколько, то расчет должен производиться для каждого из них.

Расчет в данном случае ведется на основании таблицы 2.

Для вычисления полного двойного (кругового) времени прохождения для сегмента сети необходимо умножить длину сегмента на величину задержки на метр, взятую из второго столбца таблицы. Если сегмент имеет максимальную длину, то можно сразу взять величину максимальной задержки для данного сегмента из третьего столбца таблицы.

Затем задержки сегментов, входящих в путь максимальной длины, надо просуммировать и прибавить к этой сумме величину задержки для приемопередающих узлов двух абонентов (это три верхние строчки таблицы) и величины задержек для всех репитеров (концентраторов), входящих в данный путь (это три нижние строки таблицы).

Суммарная задержка должна быть меньше, чем 512 битовых интервалов. При этом надо помнить, что стандарт IEEE 802.3u рекомендует оставлять запас в пределах 1 – 4 битовых интервалов для учета кабелей внутри соединительных шкафов и погрешностей измерения. Лучше сравнивать суммарную задержку с величиной 508 битовых интервалов, а не 512 битовых интервалов.

Таблица 2.

Двойные задержки компонентов сети Fast Ethernet (величины задержек даны в битовых интервалах)

Тип сегмента

Задержка на метр

Макс. задержка

Два абонента TX/FX

Два абонента TX/FX

Два абонента T4

Два абонента T4

Один абонент T4 и один TX/FX

Один абонент T4 и один TX/FX

Экранированная витая пара

Оптоволоконный кабель

Репитер (концентратор) класса I

TX/FX

Репитер (концентратор) класса II с портами TX/FX

Репитер (концентратор) класса II с портами T4

Репитер (концентратор) класса II с портами T4

Все задержки, приведенные в таблице, даны для наихудшего случая. Если известны временные характеристики конкретных кабелей, концентраторов и адаптеров, то практически всегда предпочтительнее использовать именно их. В ряде случаев это может дать заметную прибавку к допустимому размеру сети.

Пример расчета для сети, показанной на рис. 5:

Здесь существуют два максимальных пути: между компьютерами (сегменты А, В и С) и между верхним (по рисунку) компьютером и коммутатором (сегменты А, В и D). Оба эти пути включают в себя два 100-метровых сегмента и один 5-метровый. Предположим, что все сегменты представляют собой 100BASE-TX и выполнены на кабеле категории 5. Для двух 100-метровых сегментов (максимальной длины) из таблицы следует взять величину задержки 111,2 битовых интервалов.

Рис 5. Пример максимальной конфигурации сети Fast Ethernet

Для 5-метрового сегмента при расчете задержки, умножается 1,112 (задержка на метр) на длину кабеля (5 метров): 1,112 * 5 = 5,56 битовых интервалов.

Величина задержки для двух абонентов ТХ из таблицы – 100 битовых интервалов.

Из таблицы величины задержек для двух репитеров класса II – по 92 битовых интервала.

Суммируются все перечисленные задержки:

111,2 + 111,2 + 5,56 + 100 + 92 + 92 = 511,96

это меньше 512, следовательно, данная сеть будет работоспособна, хотя и на пределе, что не рекомендуется.

11.6. Определить надежность ЛВС

Для модели с двумя состояниями (работает и не работает) вероятность работоспособности компонента или, проще надежность, можно понимать по-разному. Наиболее распространенными являются формулировки:

1. доступность компонента

2. надежность компонента

Доступность используется в контексте ремонтоспособных систем. Из сказанного следует, что компонент может находиться в одном из трех состояний: работает, не работает, в процессе восстановления. Доступность компонента определяется как вероятность его работы в случайный момент времени. Оценка величины доступности производится с учетом среднего времени восстановления в рабочее состояние и среднего времени в не рабочем состоянии. Надежность можно записать:

______________среднее время до отказа______________

среднее время до отказа + среднее время восстановления

Количественные значения показателей надежности АИС должны быть не хуже следующих:

Среднее время наработки на отказ комплекса программно-технических средств (КПТС) АИС должно составлять не менее 500 часов;

Среднее время наработки на отказ единичного канала связи АИС должно составлять не менее 300 часов;

Среднее время наработки на отказ серверов АИС должно составлять не менее 10000 часов;

Среднее время наработки на отказ ПЭВМ (в составе АРМ) должно составлять не менее 5000 часов;

Среднее время наработки на отказ единичной функции прикладного программного обеспечения (ППО) КПТС АИС должно составлять не менее 1500 часов;

Среднее время восстановления работоспособности КПТС АИС должно составлять не более 30 минут; при этом:

Среднее время восстановления работоспособности КПТС после отказов технических средств должно составлять - не более 20 минут, без учета времени организационных простоев;

Среднее время восстановления работоспособности КПТС после отказа общего или специального программного обеспечения АИС - не более 20 минут без учета времени организационных простоев;

Среднее время восстановления работоспособности единичного канала связи КПТС должно составлять не более 3 часов;

Среднее время восстановления работоспособности КПТС в случае отказа или сбоя из-за алгоритмических ошибок прикладного программного обеспечения программно-технологического комплекса (ПТК) АИС, без устранения которых невозможно дальнейшее функционирование КПТС или ПТК АИС - до 8 часов (с учетом времени на устранение ошибок).

12.1. Перечень этапов проектирования конфигурации ЛВС с указанием принятых проектных решений.

12.2. Функциональная схема ЛВС (чертеж ЛВС с указанием марок оборудования и линий связи). В схеме рекомендуется отметить число рабочих станций в разных сегментах ЛВС, возможные резервы расширения и «узкие» места.

12.3. Результаты расчетов стоимости ЛВС (свести в таблицу с указанием наименования, количества единиц, цены и стоимости). При расчете стоимости учесть затраты на проектирование и монтаж ЛВС.

Наименование

Количество

Стоимость

Примечание

12.4 Произвести расчет задержки ЛВС и ее надежности.

Приложение 1.

Таблица 1

Сравнительные данные по характеристикам ЛВС

Характеристика

Качественная оценка характеристик

Шинной и древовидной сети

Кольцевой сети

Звездообразной сети

Время ответа

tотв.

В маркерной шине
tотв. предсказуемо и зависит от числа узлов сети. В случайной шине
t отв. зависит от нагрузки

tотв. Есть функция от числа узлов сети

toтв. зависит от нагрузки и временных характеристик центрального узла

Пропускная способность С

В маркерной шине зависит от количества узлов. В случайной шине С увеличивается при спорадических малых нагрузках и падает при обмене длинными сообщениями в стационарном режиме

С падает при добавлении новых узлов

С зависит от производительности центрального узла и пропускной способности абонентских каналов

Надежность

Отказы АС не влияют на работоспособность остальной части сети. Разрыв кабеля выводит из строя шинную ЛВС.

Отказ одной АС не приводит к отказу всей сети. Однако использование обходных схем позволяет защитить сеть от отказов АС

Отказы АС не влияют на работоспособность остальной части сети. Надежность ЛВС определяется надежностью центрального узла

В набор параметров линий связи ЛВС входят: полоса пропускания и скорость передачи данных, способность к двухточечной, многоточечной и/или широковещательной передаче (то есть допустимые применения), максимальная протяженность и число подключаемых абонентских систем, топологическая гибкость и трудоемкость прокладки, устойчивость к помехам и стоимость.

Главная проблема заключается в одновременном обеспечении показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость.

Условия физического расположения помогают определить наилучшим образом тип кабеля и его топологию. Каждый тип кабеля имеет собственные ограничения по максимальной длине: витая пара обеспечивает работу на коротких отрезках, одноканальный коаксиальный кабель - на больших расстояниях, многоканальный коаксиальный а волоконно-оптический кабель - на очень больших расстояниях.

Скорость передачи данных тоже ограничена возможностями кабеля: самая большая у волоконно-оптического, затем идут одноканальный коаксиальный, многоканальный кабели и витая пара. Под требуемые характеристики можно подобрать имеющиеся в наличии кабели.

Fast Ethernet 802.3u не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3 в виде глав. Новая технология Fast Ethernet сохранила весь MAC уровень классического Ethernet , но пропускная способность была повышена до 100 Мбит/с. Следовательно, поскольку пропускная способность увеличилась в 10 раз, то битовый интервал уменьшился в 10 раз, и стал теперь равен 0,01 мкс. Поэтому в технологии Fast Ethernet время передачи кадра минимальной длины в битовых интервалах осталось тем же, но равным 5,75 мкс. Ограничение на общую длину сети Fast Ethernet уменьшилось до 200 метров. Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же.

Официальный стандарт 802.3u установил три различных спецификации для физического уровня Fast Ethernet :

- 100Base-TX - для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1 ;

- 100Base -T4 - для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;

100Base-FX - для многомодового оптоволоконного кабеля, используются два волокна.

В Ethernet вводится 2 класса концентраторов: 1-го класса и 2-го класса. Концентраторы 1-го класса поддерживают все типы кодирования физического уровня (TX, FX, T4 ), т. е. порты могут быть разные. Концентраторы 2-го класса поддерживают только один тип кодирования физического уровня: либо TX/FX , либо T4 .

Предельные расстояния от хаба до узла:

- TX – 100 м, FX – многомодовые: 412 м (полудуплекс), 2км (полный). Одномодовые: 412 м (полудуплекс), до 100 км (полный), T4 – 100 м.

Концентратор 1-го класса в сети может быть только один, концентраторов 2-го класса – два, но м/д ними 5 м.

Витая пара (UTP)

Наиболее дешевым кабельным соединением является двухжильное соединение витым проводом, часто называемое витой парой (twisted pair ). Она позволяет передавать информацию со скоростью до 10-100 Мбит/с, легко наращивается, однако является помехонезащищенной. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и простая установка. Для повышения помехозащищенности информации часто используют экранированную витую пару. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля.

1. Традиционный телефонный кабель, по нему можно передавать речь, но не данные.

2. Способен передавать данные со скоростью до 4 Мбит/с. 4 витые пары.

3. Кабель, способный передавать данные со скоростью до 10 Мбит/с. 4 витых пар с девятью витками на метр.

4. Кабель, способный передавать данные со скоростью до 16 Мбит/с. 4 витых пар.

5. Кабель, способный передавать данные со скоростью до 100 Мбит/с. Состоит из четырех витых пар медного провода.

6. Кабель, способный передавать данные со скоростью до 1 Гб/с, состоит из 4 витых пар.

Коаксиальный кабель имеет среднюю цену, помехозащищен и применяется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для основной и широкополосной передачи информации.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко наращивается, но цена его высокая. Скорость передачи информации равна 500 Мбит/с. При передаче информации в базисной полосе частот на расстояние более 1,5 км требуется усилитель, или так называемый повторитель (repeater ). Поэтому суммарное расстояние при передаче информации увеличивается до 10 км. Для вычислительных сетей с топологией шина или дерево коаксиальный кабель должен иметь на конце согласующий резистор (terminator).

Ethernet -кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet (thick ) или желтый кабель (yellow cable ). Он использует 15-контактное стандартное включение. Вследствие помехозащищенности является дорогой альтернативой обычным коаксиальным кабелям. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000 м. Ethernet -кабель, благодаря своей магистральной топологии, использует в конце лишь один нагрузочный резистор.

Более дешевым, чем Ethernet -кабель, является соединение Cheapernet -кабель или, как его часто называют, тонкий (thin ) Ethernet . Это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 миллионов бит/с.

При соединении сегментов Cheapernet -кабеля также требуются повторители. Вычислительные сети с Cheapernet -кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединение сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР-50 ). Дополнительного экранирования не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (Tconnectors ). Расстояние между двумя рабочими станциями без повторителей можетсоставлять максимум 300 м, а общее расстояние для сети на Cheapemet -кабеле - около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате и используется как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала.

Наиболее дорогими являются оптопроводники, называемые также стекловолоконным кабелем. Скорость распространения информации по ним достигает нескольких гигабит в секунду. Внешнее воздействие помех практически отсутствует. Применяются там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподслушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются в ЛВС с помощью звездообразного соединения.

2 вида оптоволокна :

1)одномодовый кабель – используется центральный проводник малого диаметра, соизмеримого с длиной волны света (5-10мкм). При этом все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. В качестве используют лазер. Длина кабеля – 100км и более.

2)многомодовый кабель – используют более широкие внутренние сердечники (40-100мкм). Во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами. Угол отражения наз. модой луча. В качестве источника излучения применяются светодиоды. Длина кабеля – до 2км.

СПИСОК ЛИТЕРАТУРЫ

Олифер сети. Принципы, технологии, протоколы. - Спб.: Питер, 20с.

Гук, М. Аппаратные средства локальных сетей. Энциклопедия.- СПб. : Изд-во Питер, 2004 .- 576 с.

Новиков, сети: архитектура, алгоритмы, проектирование.- М. : ЭКОМ, 2002 .- 312с. : ил. ; 23см. - ISBN -8.

Епанешников, вычислительные сети / , .- Москва: Диалог-МИФИ, 2005 .- 224 с.

1. http://*****/, система для автоматического создания проектов локальных вычислительных сетей
Составители: Николай Михайлович Дубинин

Руслан Николаевич Агапов

Геннадий Владимирович Старцев

ПРОЕКТИРОВАНИЕ ЛОКАЛЬНОЙ ВЫЧИСЛИТЕЛЬНОЙ СЕТИ

Лабораторный практикум по дисциплине

«Сети ЭВМ и телекоммуникации»

Подписано в печать хх.05.2008. Формат 60х84 1/16.

Бумага офсетная. Печать плоская. Гарнитура Times New Roman.

Усл. печ. л. . Усл. кр. – отт. . Уч. – изд. л. .

Тираж 100 экз. Заказ №

ГОУ ВПО Уфимский государственный авиационный

технический университет

Центр оперативной полиграфии УГАТУ

Уфа-центр, ул. К. Маркса, 12

Московский Государственный Горный Университет

Кафедра Автоматизированных Систем Управления

Курсовой проект

по дисциплине «Сети ЭВМ и телекоммуникации»

на тему: «Проектирование локальной вычислительной сети»

Выполнил:

Ст. гр. АС-1-06

Юрьева Я.Г.

Проверил:

проф., д. т. н. Шек В.М.

Москва 2009

Введение

1 Задание на проектирование

2 Описание локально-вычислительной сети

3 Топология сети

4 Схема локальной сети

5 Эталонная модель OSI

6 Обоснование выбора технологии развертывания локальной сети

7 Сетевые протоколы

8 Аппаратное и программное обеспечение

9 Расчет характеристик сети

Список используемой литературы

Локальная вычислительная сеть (ЛВС) представляет собой коммуникационную систему, объединяющую компьютеры и периферийное оборудование на ограниченной территории, обычно не больше нескольких зданий или одного предприятия. В настоящее время ЛВС стала неотъемлемым атрибутом в любых вычислительных системах, имеющих более 1 компьютера.

Основные преимущества, обеспечиваемые локальной сетью – возможность совместной работы и быстрого обмена данными, централизованное хранение данных, разделяемый доступ к общим ресурсам, таким как принтеры, сеть Internet и другие.

Еще одной важнейшей функцией локальной сети является создание отказоустойчивых систем, продолжающих функционирование (пусть и не в полном объеме) при выходе из строя некоторых входящих в них элементов. В ЛВС отказоустойчивость обеспечивается путем избыточности, дублирования; а также гибкости работы отдельных входящих в сеть частей (компьютеров).

Конечной целью создания локальной сети на предприятии или в организации является повышение эффективности работы вычислительной системы в целом.

Построение надежной ЛВС, соответствующей предъявляемым требованиям по производительности и обладающей наименьшей стоимостью, требуется начинать с составления плана. В плане сеть разделяется на сегменты, подбирается подходящая топология и аппаратное обеспечение.

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

В сети с топологией «шина» (рис.1.) компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

Рис.1. Топология «Шина»

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.

Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Так как кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

· характеристики аппаратного обеспечения компьютеров в сети;

· частота, с которой компьютеры передают данные;

· тип работающих сетевых приложений;

· тип сетевого кабеля;

· расстояние между компьютерами в сети.

Шина - пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - неподключенному - концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Введение

Современное общество вступило в постиндустриальную эпоху, которая характеризуется тем, что информация стала важнейшим ресурсом развития экономики и общества. В русле общего развития высоких технологий основной вклад в информатизацию всех сфер жизни вносят компьютерные технологии.

Одну из характерных черт нынешнего этапа развития информационных технологий можно определить словами "объединение" или "интеграция". Объединяются аналоговое и цифровое, телефон и компьютер, объединяются в одном потоке речь, данные, аудио- и видеосигналы, объединяются в единой технологии техника и искусство (мультимедиа и гипермедиа). Оборотной стороной этого процесса является «разделение» или «коллективное использование» (sharing). Неотъемлемой частью этого процесса является развитие компьютерных сетей.

Компьютерные сети, по сути, являются распределенными системами. Основным признаком таких систем является наличие нескольких центров обработки данных. Компьютерные сети, называемые так же вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации – компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет группу взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютеры и мультиплексирования данных, получившие развитии в различных телекоммуникационных системах.

Локальная вычислительная сеть (ЛВС) или LAN это группа персональных компьютеров или периферийных устройств, объединенных между собой высокоскоростным каналом передачи данных в расположении одного или многих близлежащих зданий. Основная задача, которая ставится при построении локальных вычислительных сетей – это создание телекоммуникационной инфраструктуры компании, обеспечивающей решение поставленных задач с наибольшей эффективностью. Существует ряд причин, для объединения отдельных персональных компьютеров в ЛВС:

Во-первых, совместное использование ресурсов позволяет нескольким ПК или другим устройствам осуществлять совместный доступ к отдельному диску (файл-серверу), дисководу DVD-ROM, принтерам, плоттерам, к сканерам и другому оборудованию, что снижает затраты на каждого отдельного пользователя.

Во-вторых, кроме совместного использования дорогостоящих периферийных устройств ЛВЛ позволяет аналогично использовать сетевые версии прикладного программного обеспечения.

В-третьих, ЛВС обеспечивает новые формы взаимодействия пользователей в одном коллективе, например работе над общим проектом.

В–четвертых, ЛВС дают возможность использовать общие средства связи между различными прикладными системами (коммуникационные услуги, передача данных и видеоданных, речи и т.д.).

Можно выделить три принципа ЛВС:

1) Открытость возможность подключения дополнительных компьютеров и других устройств, а так же линий (каналов) связи без изменения технических и программных средств существующих компонентов сети.

2) Гибкость – сохранение работоспособности при изменении структуры в результате выхода из строя любого компьютера или линии связи.

3) Эффективность обеспечение требуемого качества обслуживания пользователей при минимальных затратах.

У локальной сети есть следующие отличительные признаки:

Высокая скорость передачи данных (до 10 Гб), большая пропускная способность;

Низкий уровень ошибок передачи (высококачественные каналы передачи);

Эффективный быстродействующий механизм управления обменом данных;

Точно определенное число компьютеров, подключаемых к сети. В настоящее время трудно представить какую либо организацию без установленной в ней локальной сети, все организации стремятся модернизировать свою работу с помощью локальных сетей.

В данном курсовом проекте описано создание локальной сети на базе технологии Gigabit Ethernet, путем объединения нескольких домов, и организация выхода в Интернет.

1. Создание локальной вычислительной сети

1.1 Топологии сетей

Топология - это способ физического соединения компьютеров в локальную сеть.

Существует три основных топологии, применяемые при построении компьютерных сетей:

Топология "Шина";

Топология "Звезда";

Топология "Кольцо".

При создании сети с топологией «Шина» все компьютеры подключаются к одному кабелю (рисунок 1.1). На его концах должны быть расположены терминаторы. По такой топологии строятся 10 Мегабитные сети 10Base-2 и 10Base-5. В качестве кабеля используется Коаксиальные кабели.

Рисунок 1.1 – Топология «Шина»

Пассивная топология, строится на использовании одного общего канала связи и коллективного использования его в режиме разделения времени. Нарушение общего кабеля или любого из двух терминаторов приводит к выходу из строя участка сети между этими терминаторами (сегмент сети). Отключение любого из подключенных устройств на работу сети никакого влияния не оказывает. Неисправность канала связи выводит из строя всю сеть. Все компьютеры в сети «слушают» несущую и не участвуют в передаче данных между соседями. Пропускная способность такой сети снижается с увеличением нагрузки или при увеличении числа узлов. Для соединения кусков шины могут использоваться активные устройства - повторители (repeater) с внешним источником питания.

Топология «Звезда» предполагает подключение каждого компьютера отдельным проводом к отдельному порту устройства, называемого концентратором или повторителем (репитер), или хабом (Hub) (рисунок 1.2).

Рисунок 1.2 – Топология «Звезда»

Концентраторы могут быть как активные, так и пассивные. Если между устройством и концентратором происходит разрыв соединения, то вся остальная сеть продолжает работать. Правда, если этим устройством был единственный сервер, то работа будет несколько затруднена. При выходе из строя концентратора сеть перестанет работать.

Данная сетевая топология наиболее удобна при поиске повреждений сетевых элементов: кабеля, сетевых адаптеров или разъемов. При добавлении новых устройств «звезда» также удобней по сравнению с топологией общая шина. Также можно принять во внимание, что 100 и 1000 Мбитные сети строятся по топологии «Звезда».

Топология «Кольцо» активная топология. Все компьютеры в сети связаны по замкнутому кругу (рисунок 1.3). Прокладка кабелей между рабочими станциями может оказаться довольно сложной и дорогостоящей, если они расположены не по кольцу, а, например, в линию. В качестве носителя в сети используется витая пара или оптоволокно. Сообщения циркулируют по кругу. Рабочая станция может передавать информацию другой рабочей станции только после того, как получит право на передачу (маркер), поэтому коллизии исключены. Информация передается по кольцу от одной рабочей станции к другой, поэтому при выходе из строя одного компьютера, если не принимать специальных мер выйдет из строя вся сеть.

Время передачи сообщений возрастает пропорционально увеличению числа узлов в сети. Ограничений на диаметр кольца не существует, т.к. он определяется только расстоянием между узлами в сети.

Кроме приведенных выше топологий сетей широко применяются т. н. гибридные топологии: «звезда-шина», «звезда-кольцо», «звезда-звезда».

Рисунок 1.3 – Топология «Кольцо»

Кроме трех рассмотренных основных, базовых топологий нередко применяется также сетевая топология «дерево» (tree), которую можно рассматривать как комбинацию нескольких звезд. Как и в случае звезды, дерево может быть активным, или истинным, и пассивным. При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы).

Применяются довольно часто и комбинированные топологии, среди которых наибольшее распространение получили звездно-шинная и звездно-кольцевая. В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. В этом случае к концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты, то есть на самом деле реализуется физическая топология «шина», включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. Таким образом, пользователь получает возможность гибко комбинировать преимущества шинной и звездной топологий, а также легко изменять количество компьютеров, подключенных к сети.

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы, к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов все линии связи образуют замкнутый контур. Данная топология позволяет комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети.

В данном курсовом проекте будет использоваться топология «звезда», которая обладает следующими преимуществами:

1. выход из строя одной рабочей станции не отражается на работе всей сети в целом;

2. хорошая масштабируемость сети;

3. лёгкий поиск неисправностей и обрывов в сети;

4. высокая производительность сети (при условии правильного проектирования);

5. гибкие возможности администрирования.

1.2 Кабельная система

Выбор кабельной подсистемы диктуется типом сети и выбранной топологией. Требуемые же по стандарту физические характеристики кабеля закладываются при его изготовлении, о чем и свидетельствуют нанесенные на кабель маркировки. В результате, сегодня практически все сети проектируются на базе UTP и волоконно-оптических кабелей, коаксиальный кабель применяют лишь в исключительных случаях и то, как правило, при организации низкоскоростных стеков в монтажных шкафах.

В проекты локальных вычислительных сетей (стандартных) закладываются на сегодня всего три вида кабелей:

коаксиальный (двух типов):

Тонкий коаксиальный кабель (thin coaxial cable);

Толстый коаксиальный кабель (thick coaxial cable).

витая пара (двух основных типов):

Неэкранированная витая пара (unshielded twisted pair - UTP);

Экранированная витая пара (shielded twisted pair - STP).

волоконно-оптический кабель (двух типов):

Многомодовый кабель (fiber optic cable multimode);

Одномодовый кабель (fiber optic cable single mode).

Не так давно коаксиальный кабель был самым распространенным типом кабеля. Это объясняется двумя причинами: во-первых, он был относительно недорогим, легким, гибким и удобным в применении; во-вторых, широкая популярность коаксиального кабеля привела к тому, что он стал безопасным и простым в установке.

Самый простой коаксиальный кабель состоит из медной жилы, изоляции, ее окружающей, экрана в виде металлической оплетки и внешней оболочки.

Если кабель кроме металлической оплетки имеет и слой «фольги», он называется кабелем с двойной экранизацией (рисунок 1.4). При наличии сильных помех можно воспользоваться кабелем с учетверенной экранизацией, он состоит из двойного слоя фольги и двойного слоя металлической оплетки.

Рисунок 1.4 – Структура коаксиального кабеля

Оплетка, ее называют экраном, защищает передаваемые по кабелям данные, поглощая внешние электромагнитные сигналы, называемые помехами или шумом, таким образом, экран не позволяет помехам исказить данные.

Электрические сигналы передаются по жиле. Жила – это один провод или пучок проводов. Жила изготавливается, как правило, из меди. Проводящая жила и металлическая оплетка не должны соприкасаться, иначе произойдет короткое замыкание и помехи исказят данные.

Коаксиальный кабель более помехоустойчивый, затухание сигнала в нем меньше, чем в витой паре.

Затухание – это уменьшение величины сигнала при его перемещении по кабелю.

Тонкий коаксиальный кабель – гибкий кабель диаметром около 5 мм. Он применим практически для любого типа сетей. Подключается непосредственно к плате сетевого адаптера с помощью Т-коннектора.

У кабеля разъемы называются BNC коннекторы. Тонкий коаксиальный кабель способен передавать сигнал на расстоянии 185 м, без его замедленного затухания.

Тонкий коаксиальный кабель относится к группе, которая называется семейством RG– 58. Основная отличительная особенность этого семейства медная жила.

RG 58/U – сплошная медная жила.

RG 58/U – переплетенные провода.

RG 58 C/U- военный стандарт.

RG 59 – используется для широкополосной передачи.

RG 62 – используется в сетях Archet.

Толстый коаксиальный кабель относительно жесткий кабель с диаметром около 1 см. Иногда его называют стандартом Ethernet, потому что этот тип кабеля был предназначен для данной сетевой архитектуры. Медная жила этого кабеля толще, чем у тонкого кабеля, поэтому он передает сигналы дальше. Для подключения к толстому кабелю применяют специальное устройство трансивер.

Трансивер снабжен специальным коннектором, который называется «зуб вампира» или пронзающий ответвитель. Он проникает через изоляционный слой и вступает в контакт с проводящей жилой. Чтобы подключить трансивер к сетевому адаптеру надо кабель трансивера подключить к коннектору AUI – порта к сетевой плате.

Витая пара – это два перевитых вокруг друг друга изоляционных медных провода. Существует два типа тонкого кабеля: неэкранированная витая пара (UTP) и экранированная витая пара (STP) (рисунок 1.5).

Рисунок 1.5 – Неэкранированная и экранированная витая пара

Несколько витых пар часто помещают в одну защитную оболочку. Их количество в таком кабеле может быть разным. Завивка проводов позволяет избавиться от электрических помех, наводимых соседними парами и другими источниками (двигателями, трансформаторами).

Неэкранированная витая пара (спецификация 10 Base T) широко используется в ЛВС, максимальная длина сегмента составляет 100 м.

Неэкранированная витая пара состоит из 2х изолированных медных проводов. Существует несколько спецификаций, которые регулируют количество витков на единицу длины – в зависимости от назначения кабеля.

1) Традиционный телефонный кабель, по которому можно передавать только речь.

2) Кабель, способный передавать данные со скоростью до 4 Мбит/с. Состоит из 4х витых пар.

3) Кабель, способный передавать данные со скоростью до 10 Мбит/с. Состоит из 4х витых пар с 9-ю витками на метр.

4) Кабель, способный передавать данные со скоростью до 16 Мбит/с. Состоит из 4х витых пар.

5) Кабель, способный передавать данные со скоростью до 100 Мбит/с. Состоит из 4х витых пар медного провода.

Одной из потенциальных проблем для всех типов кабелей являются перекрестные помехи.

Перекрестные помехи – это перекрестные наводки, вызванные сигналами в смежных проводах. Неэкранированная витая пара особенно страдает от этих помех. Для уменьшения их влияния используют экран.

Кабель, экранированной витой пары (STP) имеет медную оплетку, которая обеспечивает большую защиту, чем неэкранированная витая пара. Пары проводов STP обмотаны фольгой. В результате экранированная витая пара обладает прекрасной изоляцией, защищающей передаваемые данные от внешних помех.

Следовательно, STP по сравнению с UTP меньше подвержена воздействию электрических помех и может передавать сигналы с большей скоростью и на большие расстояния.

Для подключения витой пары к компьютеру используют телефонные коннекторы RG- 45.


Рисунок 1.6 – Структура оптоволоконного кабеля

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это относительно надежный (защищенный) способ передачи, поскольку электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя скрыть и перехватить данные, от чего не застрахован любой кабель, проводящий электрические сигналы.

Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается.

Оптическое волокно – чрезвычайно тонкий стеклянный цилиндр, называемый жилой, покрытый слоем стекла, называемого оболочкой, с иным, чем у жилы, коэффициентом преломления (рисунок 1.6). Иногда оптоволокно производят из пластика, он проще в использовании, но имеет худшие характеристики по сравнению со стеклянным.

Каждое стеклянное оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами. Одно из них служит для передачи сигнала, другой для приема.

Передача по оптоволоконному кабелю не подвержена электрическим помехам и ведется с чрезвычайно высокой скоростью (в настоящее время до 100Мбит/сек, теоретически возможная скорость – 200000 Мбит/сек). По нему можно передавать данные на многие километры.

В данном курсовом проекте будет использованна «Витая пара» категории 5Е и «Оптоволоконный кабель».

1.3 Технология сети Gigabit Ethernet

При организации взаимодействия узлов в локальных сетях основная роль отводится протоколу канального уровня. Однако для того, чтобы канальный уровень мог справиться с этой задачей, структура локальных сетей должна быть вполне определенной, так, например, наиболее популярный протокол канального уровня - Ethernet - рассчитан на параллельное подключение всех узлов сети к общей для них шине - отрезку коаксиального кабеля. Подобный подход, заключающийся в использовании простых структур кабельных соединений между компьютерами локальной сети, соответствовал основной цели, которую ставили перед собой разработчики первых локальных сетей во второй половине 70-х годов. Эта цель заключалась в нахождении простого и дешевого решения для объединения нескольких десятков компьютеров, находящихся в пределах одного здания в вычислительную сеть.

Данная технология потеряла свою практичность, так как сейчас в локальные сети объединяются не десятки, а сотни компьютеров находящихся не только в разных зданиях, но и в разных районах. Поэтому выбираем более высокую скорость и надежность передачи информации. Эти требования выполняются технологией Gigabit Ethernet 1000Base-T.

Gigabit Ethernet 1000Base-T, основана на витой паре и волоконно-оптическом кабеле. Поскольку технология Gigabit Ethernet совместима с 10 Mbps и 100Mbps Ethernet, возможен легкий переход на данную технологию без инвестирования больших средств в программное обеспечение, кабельную структуру и обучение персонала.

Технология Gigabit Ethernet – это расширение IEEE 802.3 Ethernet, использующее такую же структуру пакетов, формат и поддержку протокола CSMA/CD, полного дуплекса, контроля потока и прочее, но при этом предоставляя теоретически десятикратное увеличение производительности.

CSMA/CD (Carrier-Sense Multiple Access with Collision Detection – множественный доступ с контролем несущей и обнаружением коллизий) – технология множественного доступа к общей передающей среде в локальной компьютерной сети с контролем коллизий. CSMA/CD относится к децентрализованным случайным методам. Он используется как в обычных сетях типа Ethernet, так и в высокоскоростных сетях (Fast Ethernet, Gigabit Ethernet).

Так же называют сетевой протокол, в котором используется схема CSMA/CD. Протокол CSMA/CD работает на канальном уровне в модели OSI.

Характеристики и области применения этих популярных на практике сетей связаны именно с особенностями используемого метода доступа. CSMA/CD является модификацией «чистого» Carrier Sense Multiple Access (CSMA).

Если во время передачи фрейма рабочая станция обнаруживает другой сигнал, занимающий передающую среду, она останавливает передачу, посылает jam signal и ждет в течение случайного промежутка времени (известного как «backoff delay» и находимого с помощью алгоритма truncared binary exponential backoff), перед тем как снова отправить фрейм.

Обнаружение коллизий используется для улучшения производительности CSMA с помощью прерывания передачи сразу после обнаружения коллизии и снижения вероятности второй коллизии во время повторной передачи.

Методы обнаружения коллизий зависят от используемого оборудования, но на электрических шинах, таких как Ethernet коллизии могут быть обнаружены сравнением передаваемой и получаемой информации. Если она различается, то другая передача накладывается на текущую (возникла коллизия) и передача прерывается немедленно. Посылается jam signal, что вызывает задержку передачи всех передатчиков на произвольный интервал времени, снижая вероятность коллизии во время повторной попытки.

1.4 Аппаратное обеспечение

Выбору аппаратного обеспечения нужно уделить особое внимание, немалую роль играет возможность расширения системы и простота ее модернизации, поскольку именно это позволяет обеспечить требуемую производительность не только на текущий момент времени, но и в будущем.

Наибольший интерес представляет максимальный объем оперативной памяти, который можно использовать на данном сервере, возможность установки более мощного процессора, а так же второго процессора (если планируется использование операционной системы, поддерживающей двухпроцессорную конфигурацию). Немаловажным так же остается вопрос о том, какую конфигурацию дисковой подсистемы можно использовать на данном сервере, в первую очередь, какой объем дисков, максимальное их количество.

Несомненно, что жизненно важным параметром любого сервера является его качественное и бесперебойное питание. В связи с этим необходимо проверить наличие у сервера нескольких (хотя бы двух) блоков питания. Обычно эти два блока питания работают параллельно, т.е. при выходе из строя оного, сервер продолжает работать, получая питание от другого (исправного) блока питания. При этом должна так же быть возможность их «горячей» замены. И, само собой разумеется, необходим источник бесперебойного питания. Его наличие позволяет в случае пропадания напряжения в электросети, по крайней мере, корректно завершить работу операционной системы и включить сервер.

Высокая надежность серверов достигается путем реализации комплекса мер, касающихся как обеспечения необходимого теплообмена в корпусе, контроля температуры важнейших компонентов, слежения за рядом других параметров, так и полного или частичного дублирования подсистем.

Также необходимо уделить внимание выбору дополнительных аппаратных компонентов сети. При выборе сетевого оборудования стоит учитывать топологию сети и кабельную систему, на которой она выполнена.

· Уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

· Скорость передачи информации и возможность ее дальнейшего увеличения;

· Возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

· Метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);

· Разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

· Стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов).

Минимальные требования к серверу:

CPU AMD Athlon64 X2 6000+ 3,1ГГц;

Сетевые адаптеры Dual NC37H с сетевой картой TCP/IP Offload Engine;

ОЗУ 8 Гб;

HDD 2x500 Гб Seagate Barracuda 7200 об/мин.

1.5 Программное обеспечение

Программное обеспечение вычислительных сетей состоит из трех составляющих:

1) автономных операционных систем (ОС), установленных на рабочих станциях;

2) сетевых операционных систем, установленных на выделенных серверах, которые являются основой любой вычислительной сети;

3) сетевых приложений или сетевых служб.

В качестве автономных ОС для рабочих станций, как правило, используются современные 32-разрядные операционные системы – Windows 95/98, Windows 2000, Windows XP, Windows VISTA.

В качестве сетевых ОС в вычислительных сетях применяются:

ОС NetWare фирмы Novell;

Сетевые ОС фирмы Microsoft (ОС Windows NT, Microsoft Windows 2000 Server, Windows Server 2003, Windows Server 2008)

Windows Server 2008 обеспечивает три основных преимущества:

1) Улучшенный контроль

Windows Server 2008 позволяет лучше контролировать инфраструктуру серверов и сети и сконцентрироваться на решении задач первоочередной важности благодаря следующему.

Упрощенное управление ИТ-инфраструктурой с помощью новых средств, обеспечивающих единый интерфейс для настройки и мониторинга серверов и возможность автоматизации рутинных операций.

Оптимизация процессов установки Windows Server 2008 и управления ими за счет развертывания только нужных ролей и функций. Настройка конфигурации серверов уменьшает количество уязвимых мест и снижает потребность в обновлении программного обеспечения, что приводит к упрощению текущего обслуживания.

Эффективное обнаружение и устранение неполадок с помощью мощных средств диагностики, дающих наглядное представление об актуальном состоянии серверной среды, как физической, так и виртуальной.

Улучшенный контроль над удаленными серверами, например серверами филиалов. Благодаря оптимизации процессов администрирования серверов и репликации данных вы сможете лучше обслуживать своих пользователей и избавитесь от некоторых управленческих проблем.

Облегченное управление веб-серверами с помощью Internet Information Services 7.0 - мощной веб-платформы для приложений и служб. Эта модульная платформа имеет более простой интерфейс управления на основе задач и интегрированные средства управления состоянием веб-служб, обеспечивает строгий контроль над взаимодействием узлов, а также содержит ряд усовершенствований по части безопасности.

Улучшенный контроль параметров пользователей с помощью расширенной групповой политики.

2) Повышенная гибкость

Перечисленные ниже возможности Windows Server 2008 позволяют создавать гибкие и динамичные центры данных, которые отвечают непрерывно меняющимся потребностям компании.

Встроенные технологии для виртуализации на одном сервере нескольких операционных систем (Windows, Linux и т. д.). Благодаря этим технологиям, а также более простым и гибким политикам лицензирования сегодня можно без труда воспользоваться преимуществами виртуализации, в том числе экономическими.

Централизованный доступ к приложениям и беспрепятственная интеграция удаленно опубликованных приложений. Кроме того, нужно отметить возможность подключения к удаленным приложениям через межсетевой экран без использования VPN - это позволяет быстро реагировать на потребности пользователей, независимо от их местонахождения.

Широкий выбор новых вариантов развертывания.

Гибкие и функциональные приложения связывают работников друг с другом и с данными, обеспечивая таким образом наглядное представление, совместное использование и обработку информации.

Взаимодействие с существующей средой.

Развитое и активное сообщество для поддержки на всем протяжении жизненного цикла.

3) Улучшенная защита

Windows Server 2008 усиливает безопасность операционной системы и среды в целом, формируя надежный фундамент, на котором вы сможете развивать свой бизнес. Защита серверов, сетей, данных и учетных записей пользователей от сбоев и вторжений обеспечивается Windows Server за счет следующего.

Усовершенствованные функции безопасности уменьшают уязвимость ядра сервера, благодаря чему повышается надежность и защищенность серверной среды.

Технология защиты сетевого доступа позволяет изолировать компьютеры, которые не отвечают требованиям действующих политик безопасности. Возможность принудительно обеспечивать соблюдение требований безопасности является мощным средством защиты сети.

Усовершенствованные решения по составлению интеллектуальных правил и политик, улучшающих управляемость и защищенность сетевых функций, позволяют создавать регулируемые политиками сети.

Защита данных, которая разрешает доступ к ним только пользователям с надлежащим контекстом безопасности и исключает потерю в случае поломки оборудования.

Защита от вредоносных программ с помощью функции контроля учетных записей с новой архитектурой проверки подлинности.

Повышенная устойчивость системы, уменьшающая вероятность потери доступа, результатов работы, времени, данных и контроля.

Для пользователей локальных вычислительных сетей большой интерес представляет набор сетевых служб, с помощью которых он получает возможность просмотреть список имеющихся в сети компьютеров, прочесть удаленный файл, распечатать документ на принтере, установленном на другом компьютере в сети или послать почтовое сообщение.

Реализация сетевых служб осуществляется программным обеспечением (программными средствами). Файловая служба и служба печати предоставляются операционными системами, а остальные службы обеспечиваются сетевыми прикладными программами или приложениями. К традиционным сетевым службам относятся: Telnet, FTP, HTTP, SMTP, POP-3.

Служба Telnet позволяет организовывать подключения пользователей к серверу по протоколу Telnet.

Служба FTP обеспечивает пересылку файлов с Web-серверов. Эта служба обеспечивается Web-обозревателями (Internet Explorer, Mozilla Firefox, Opera и др.)

HTTP - служба, предназначенная для просмотра Web-страниц (Web-сайтов), обеспечивается сетевыми прикладными программами: Internet Explorer, Mozilla Firefox, Opera и др.

SMTP, POP-3 - службы входящей и исходящей электронной почты. Реализуются почтовыми прикладными программами: Outlook Express, The Bat и др.

Так же на сервере необходима антивирусная программа. ESET NOD32 Smart Security Business Edition является новым интегрированным решением, предоставляющим комплексную защиту серверов и рабочих станций для всех типов организаций.

Данное решение включает функции антиспама и персонального файервола, которые могут использоваться непосредственно на рабочей станции.

ESET NOD32 Smart Security Business Edition обеспечивает поддержку файловых серверов Windows, Novell Netware и Linux/FreeBSD и их защиту от известных и неизвестных вирусов, червей, троянских и шпионских программ, а также других интернет-угроз. В решении существует возможность сканирования по доступу, по запросу и автоматическое обновление.

Решение ESET NOD32 Smart Security Business Edition включает компоненту ESET Remote Administrator, обеспечивающее обновление и централизованное администрирование в корпоративных сетевых средах или глобальных сетях. Решение обеспечивает оптимальную производительность систем и сетей при одновременном снижении потребляемой пропускной способности. Решение обладает функциональными возможностями и гибкостью, в которых нуждается любая компания:

1) Установка на сервер. Версия для корпоративных клиентов ESET NOD32 Smart Security может быть установлена как на сервер, так и на рабочие станции. Это особенно важно для компаний, стремящихся к поддержке своей конкурентоспособности, так как серверы уязвимы для атак не менее, чем обычные рабочие станции. Если серверы не будут защищены, один вирус может повредить всю систему.

2) Удаленное администрирование. С помощью программы ESET Remote Administrator можно контролировать и администрировать программное решение по безопасности из любой точки мира. Особую важность этот фактор имеет для компаний, распределенных географически, а также для системных администраторов, предпочитающий удаленную форму работы или находящихся в разъездах.

Возможность «Зеркала». Функция зеркала ESET NOD32 позволяет ИТ-администратору ограничить полосу пропускания сети путем создания внутреннего сервера обновлений. В результате у рядовых пользователей нет необходимости выходить в Интернет для получения обновлений, что не только позволяет экономить ресурсы, но также сокращает общую уязвимость информационной структуры.

1.6 Краткий план сети

Таблица 1.1 – Краткая сводка оборудования

2 Физическое построение локальной сети и организация выхода в интернет

2.1 Сетевое оборудование

2.1.1 Активное оборудование

В данном курсовом проекте будет использовано следующее оборудование:

Коммутатор D-link DGS-3200-16;

Коммутатор D-link DGS-3100-24;

Маршрутизатор D-link DFL-1600;

Конвертер 1000 Mbit/s D-Link DMC-810SC;

Сервер IBM System x3400 M2 7837PBQ.

Рисунок 2.1 – Коммутатор D-link DGS-3200-16

Общие характеристики

Тип устройства коммутатор (switch)

есть

Количество слотов для дополнительных

интерфейсов 2

Управление

Консольный порт есть

Web-интерфейс есть

Поддержка Telnet есть

Поддержка SNMP есть

Дополнительно

Поддержка IPv6 есть

Поддержка стандартов Auto MDI/MDIX, Jumbo Frame, IEEE 802.1p (Priority tags), IEEE 802.1q (VLAN), IEEE 802.1d (Spanning Tree), IEEE 802.1s (Multiple Spanning Tree)

Размеры (ШxВxГ) 280 x 43 x 180 мм

Количество портов 16 x Ethernet 10/100/1000

коммутатора Мбит/сек

32 Гбит/сек

Размер таблицы MAC адресов 8192

Маршрутизатор

IGMP v1

Рисунок 2.2 – Коммутатор D-link DGS-3100-24

Общие характеристики

Тип устройства коммутатор (switch)

Возможность установки в стойку есть

Количество слотов для дополнительных интерфейсов 4

Управление

Консольный порт есть

Web-интерфейс есть

Поддержка Telnet есть

Поддержка SNMP есть

Дополнительно

Поддержка стандартов Auto MDI/MDIX, Jumbo Frame, IEEE 802.1p (Priority tags), IEEE 802.1q (VLAN), IEEE 802.1d (Spanning Tree), IEEE 802.1s (Multiple Spanning Tree)

Размеры (ШxВxГ) 440 x 44 x 210 мм

Вес 3.04 кг

Дополнительная информация 4 комбо-порта 1000BASE-T/SFP

Количество портов 24 x Ethernet 10/100/1000

коммутатора Мбит/сек

Поддержка работы в стеке есть

Внутренняя пропускная способность 68 Гбит/сек

Размер таблицы MAC адресов 8192

Маршрутизатор

Протоколы динамической маршрутизации IGMP v1

Рисунок 2.3 – Маршрутизатор D-link DFL-1600

Общие характеристики

Тип устройства маршрутизатор (router)

Управление

Консольный порт есть

Web-интерфейс есть

Поддержка Telnet есть

Поддержка SNMP есть

Дополнительно

Поддержка стандартов IEEE 802.1q (VLAN)

Размеры (ШxВxГ) 440 x 44 x 254 мм

Дополнительная информация 6 настраиваемых пользователем портов Gigabit Ethernet

Количество портов 5 x Ethernet 10/100/1000

коммутатора Мбит/сек

Маршрутизатор

Межсетевой экран (Firewall) есть

NAT есть

DHCP-сервер есть

Протоколы динамической

маршрутизации IGMP v1, IGMP v2, IGMP v3, OSPF

Поддержка VPN-туннелей есть (1200 туннелей)

Рисунок 2.4 - Конвертер 1000 Mbit/s D-Link DMC-805G

Общие характеристики

· Один канал преобразования среды передачи между 1000BASE-T и 1000BASE-SX/LX (SFP mini GBIC трансивер);

· Совместимость со стандартами IEEE 802.3ab 1000BASE-T, IEEE802.3z 1000BASE-SX/LX Gigabit Ethernet;

· Индикаторы состояния на передней панели;

· Поддержка LLCF (Link Loss Carry Forward, Link Pass Through);

· Поддержка режима дуплекса и автосогласования для оптического порта;

· DIP переключатель для настройки Fiber (auto/manual), LLR (Enable/Disable);

· Поддержка LLR (Link Loss Return) для порта FX;

· Использование как отдельного устройства или установка в шасси DMC-1000;

· Мониторинг состояния дуплекс/канал для обоих типов сред через управляющий модуль DMC-1002 при установке в шасси DMC-1000;

· Принудительная установка режима дуплекса, LLR on/off для FX, порты on/off через управляющий модуль DMC-1002 шасси DMC-1000;

· Передача данных на скорости канала;

· Горячая замена при установке в шасси;

Размеры 120 x 88 x 25 мм

Вес 305 г.

Рабочая температура От 0° до 40° C

Температура хранения От -25° до 75° C

Влажность От 10% до 95 без образования конденсата

Рисунок 2.5 - Сервер IBM System x3400 M2 7837PBQ

Характеристики сервера

Процессор Intel Xeon Quad-Core

Серия E5520

Частота процессора 2260 MHz

Количество процессоров 1 (+1 опционально)

Частота системной шины 1066 МГц

Кэш второго уровня (L2C) 8 Mb

Чипсет Intel 5500

Объем оперативной памяти 12 Gb

Макисмальная оперативная память 96 Gb

Слоты под оперативную память 12

Тип оперативной памяти DDR3

Чипсет видео Встроенный

Размер видеопамяти 146 Mb

Количество жестких дисков 3

Размер жесткого диска 0 Gb

Максимальное количество дисков 8

Контроллер жестких дисков M5015

Оптические приводы DVD±RW

Сетевой интерфейс 2x Gigabit Ethernet

Внешние порты ввода-вывода 8хUSB ports (six external, two internal), dual-port

Тип монтажа Tower

Тип блока питания 920 (х2) Вт

Максимальное количество

блоков питания 2

Размеры 100 х 580 х 380 мм

Вес 33 кг

Гарантия 3 года

Дополнительная информация Клавиатура + Мышь

Дополнительные комплектующие (заказываются отдельно) Сервера IBM System x3400 M2 7837PBQ

2.1.2 Пассивное оборудование

Пассивное оборудование составляет физическую инфраструктуру сетей (коммутационные панели, розетки, стойки, монтажные шкафы, кабели, кабель-каналы, лотки и т.п.). От качества исполнения кабельной системы во многом зависит пропускная способность и качество каналов связи, поэтому для тестирования физических носителей данных должно применяться сложное и дорогостоящее оборудования под управлением квалифицированного персонала в этой области.

2.2 Расчет кабельной системы

2.2.1 Расчет длины оптоволоконного кабеля основной магистрали

В курсовом проекте необходимо соединить 4 дома. Т.к. заданные этажи 5й, 12й и 14й, то целесообразнее вести главный оптоволоконный кабель по воздушным коммуникациям.

Для подвески основной магистрали между столбами и зданиями используется специальный самонесущий оптоволоконный кабель, который имеет центральный силовой элемент (ЦСЭ) и стальной трос. Оптимальное расстояние между опорами крепления кабеля от 70 до 150 метров.


Рисунок 2.5 – Расположение домов

Таблица 2.1 – Расчет длины оптоволоконного кабеля основной магистрали

Участок кабеля Длина, м Количество сегментов Длина с запасом, м
1-2 105 1 136,5
2-3 75 1 97,5
3-4 190 1 247
4-5 100 1 130
5-6 75 1 97,5
Всего 708,5

2.2.2 Расчет длины витой пары

Для прокладки кабеля по этажам используются кабельные стояки. В подъездах. В подъездах кабель можно не упаковывать, т.к. в подъездах не так грязно и угрозы резкого перепада температуры и загрязнения минимальны.

Витая пара от коммутатора на крыше до нужного этажа идет по стояку без всякой защиты, от электрического щитка до квартиры, как в кабельных каналах, так и без них, просто прикрепленная к стене скобами.

Сервер и маршрутизатор располагается в доме № 2 на 5-м этаже 3-го подъезда в герметичной комнате с постоянным поддержанием температуры не более 30о С.

Таблица 2.2 – Расчет длины витой пары в домах

Расстояние от коммутатора до отверстия в

Кол-во кабе-ля

на квар-тиру, м

Дли-на с запас-ом, м
2 52 55 58 63 56 51 48 15 4 7 1952 2537,6
5 34 30 38 28 26 - - 15 4 5 924 1201,2
7 42 45 48 53 46 41 38 15 4 7 1672 2173,6
8 34 30 38 28 26 - - 15 5 5 1155 1501,5
5703 7413,9

2.3 Логическая структуризация сети

При работе коммутатора среда передачи данных каждого логического сегмента остается общей только для тех компьютеров, которые подключены к этому сегменту непосредственно. Коммутатор осуществляет связь сред передачи данных различных логических сегментов. Он передает кадры между логическими сегментами только при необходимости, то есть только тогда, когда взаимодействующие компьютеры находятся в разных сегментах.

Деление сети на логические сегменты улучшает производительность сети, если в сети имеются группы компьютеров, преимущественно обменивающиеся информацией между собой. Если же таких групп нет, то введение в сеть коммутаторов может только ухудшить общую производительность сети, так как принятие решения о том, нужно ли передавать пакет из одного сегмента в другой, требует дополнительного времени.

Однако даже в сети средних размеров такие группы, как правило, имеются. Поэтому разделение ее на логические сегменты дает выигрыш в производительности - трафик локализуется в пределах групп, и нагрузка на их разделяемые кабельные системы существенно уменьшается.

Коммутаторы принимают решение о том, на какой порт нужно передать кадр, анализируя адрес назначения, помещенный в кадре, а также на основании информации о принадлежности того или иного компьютера определенному сегменту, подключенному к одному из портов коммутатора, то есть на основании информации о конфигурации сети. Для того, чтобы собрать и обработать информацию о конфигурации подключенных к нему сегментов, коммутатор должен пройти стадию "обучения", то есть самостоятельно проделать некоторую предварительную работу по изучению проходящего через него трафика. Определение принадлежности компьютеров сегментам возможно за счет наличия в кадре не только адреса назначения, но и адреса источника, сгенерировавшего пакет. Используя информацию об адресе источника, коммутатор устанавливает соответствие между номерами портов и адресами компьютеров. В процессе изучения сети мост/коммутатор просто передает появляющиеся на входах его портов кадры на все остальные порты, работая некоторое время повторителем. После того, как мост/коммутатор узнает о принадлежности адресов сегментам, он начинает передавать кадры между портами только в случае межсегментной передачи. Если, уже после завершения обучения, на входе коммутатора вдруг появится кадр с неизвестным адресом назначения, то этот кадр будет повторен на всех портах.

Мосты/коммутаторы, работающие описанным способом, обычно называются прозрачными (transparent), поскольку появление таких мостов/коммутаторов в сети совершенно не заметно для ее конечных узлов. Это позволяет не изменять их программное обеспечение при переходе от простых конфигураций, использующих только концентраторы, к более сложным, сегментированным.

Существует и другой класс мостов/коммутаторов, передающих кадры между сегментами на основе полной информации о межсегментном маршруте. Эту информацию записывает в кадр станция-источник кадра, поэтому говорят, что такие устройства реализуют алгоритм маршрутизации от источника (source routing). При использовании мостов/коммутаторов с маршрутизацией от источника конечные узлы должны быть в курсе деления сети на сегменты и сетевые адаптеры, в этом случае должны в своем программном обеспечении иметь компонент, занимающийся выбором маршрута кадров.

За простоту принципа работы прозрачного моста/коммутатора приходится расплачиваться ограничениями на топологию сети, построенной с использованием устройств данного типа - такие сети не могут иметь замкнутых маршрутов - петель. Мост/коммутатор не может правильно работать в сети с петлями, при этом сеть засоряется зацикливающимися пакетами и ее производительность снижается.

Для автоматического распознавания петель в конфигурации сети разработан алгоритм покрывающего дерева (Spanning Tree Algorithm, STA). Этот алгоритм позволяет мостам/коммутаторам адаптивно строить дерево связей, когда они изучают топологию связей сегментов с помощью специальных тестовых кадров. При обнаружении замкнутых контуров некоторые связи объявляются резервными. Мост/коммутатор может использовать резервную связь только при отказе какой-либо основной. В результате сети, построенные на основе мостов/коммутаторов, поддерживающих алгоритм покрывающего дерева, обладают некоторым запасом надежности, но повысить производительность за счет использования нескольких параллельных связей в таких сетях нельзя.

2.4 IP-адресация в сети

Существует 5 классов IP-адресов – A, B, C, D, E. Принадлежность IP-адреса к тому или иному классу определяется значением первого октета (W). Ниже показано соответствие значений первого октета и классов адресов.

Таблица 2.3 – Диапазон октетов классов IP адресов

IP-адреса первых трех классов предназначены для адресации отдельных узлов и отдельных сетей. Такие адреса состоят из двух частей – номера сети и номера узла. Такая схема аналогична схеме почтовых индексов – первые три цифры кодируют регион, а остальные почтовое отделение внутри региона.

Преимущества двухуровневой схемы очевидны: она позволяет, во-первых, адресовать целиком отдельные сети внутри составной сети, что необходимо для обеспечения маршрутизации, а во-вторых – присваивать узлам номера внутри одной сети независимо от других сетей. Естественно, что компьютеры, входящие в одну и ту же сеть должны иметь IP-адреса с одинаковым номером сети.

IP-адреса разных классов отличаются разрядностью номеров сети и узла, что определяет их возможный диапазон значений. Следующая таблица отображает основные характеристики IP-адресов классов A,B и C.

Таблица 2.4 – Характеристики IP – адресов классов А, В и С

Например, IP-адрес 213.128.193.154 является адресом класса C, и принадлежит узлу с номером 154, расположенному в сети 213.128.193.0.

Схема адресации, определяемая классами A, B, и C, позволяет пересылать данные либо отдельному узлу, либо всем компьютерам отдельной сети (широковещательная рассылка). Однако существует сетевое программное обеспечение, которому требуется рассылать данные определенной группе узлов, необязательно входящих в одну сеть. Для того чтобы программы такого рода могли успешно функционировать, система адресации должна предусматривать так называемые групповые адреса. Для этих целей используются IP-адреса класса D. Диапазон адресов класса E зарезервирован и в настоящее время не используется.

Наряду с традиционной десятичной формой записи IP-адресов, может использоваться и двоичная форма, отражающая непосредственно способ представления адреса в памяти компьютера. Поскольку IP-адрес имеет длину 4 байта, то в двоичной форме он представляется как 32-разрядное двоичное число (т.е. последовательность из 32 нулей и единиц). Например, адрес 213.128.193.154 в двоичной форме имеет вид 11010101 1000000 11000001 10011010.

Протокол IP предполагает наличие адресов, которые трактуются особым образом. К ним относятся следующие:

1) Адреса, значение первого октета которых равно 127. Пакеты, направленные по такому адресу, реально не передаются в сеть, а обрабатываются программным обеспечением узла-отправителя. Таким образом, узел может направить данные самому себе. Этот подход очень удобен для тестирования сетевого программного обеспечения в условиях, когда нет возможности подключиться к сети.

2) Адрес 255.255.255.255. Пакет, в назначении которого стоит адрес 255.255.255.255, должен рассылаться всем узлам сети, в которой находится источник. Такой вид рассылки называется ограниченным широковещанием. В двоичной форме этот адрес имеет вид 11111111 11111111 11111111 11111111.

3) Адрес 0.0.0.0. Он используется в служебных целях и трактуется как адрес того узла, который сгенерировал пакет. Двоичное представление этого адреса 00000000 00000000 00000000 00000000

Дополнительно особым образом интерпретируются адреса:

Схема разделения IP-адреса на номер сети и номер узла, основанная на понятии класса адреса, является достаточно грубой, поскольку предполагает всего 3 варианта (классы A, B и C) распределения разрядов адреса под соответствующие номера. Рассмотрим для примера следующую ситуацию. Допустим, что некоторая компания, подключающаяся к Интернет, располагает всего 10-ю компьютерами. Поскольку минимальными по возможному числу узлов являются сети класса C, то эта компания должна была бы получить от организации, занимающейся распределением IP-адресов, диапазон в 254 адреса (одну сеть класса C). Неудобство такого подхода очевидно: 244 адреса останутся неиспользованными, поскольку не могут быть распределены компьютерам других организаций, расположенных в других физических сетях. В случае же, если рассматриваемая организация имела бы 20 компьютеров, распределенных по двум физическим сетям, то ей должен был бы выделяться диапазон двух сетей класса C (по одному для каждой физической сети). При этом число "мертвых" адресов удвоится.

Для более гибкого определения границ между разрядами номеров сети и узла внутри IP-адреса используются так называемые маски подсети. Маска подсети – это 4-байтовое число специального вида, которое используется совместно с IP-адресом. "Специальный вид" маски подсети заключается в следующем: двоичные разряды маски, соответствующие разрядам IP-адреса, отведенным под номер сети, содержат единицы, а в разрядах, соответствующих разрядам номера узла – нули.

Использование в паре с IP -адресом маски подсети позволяет отказаться от применения классов адресов и сделать более гибкой всю систему IP-адресации.

Так, например, маска 255.255.255.240 (11111111 11111111 11111111 11110000) позволяет разбить диапазон в 254 IP-адреса, относящихся к одной сети класса C, на 14 диапазонов, которые могут выделяться разным сетям.

Для стандартного деления IP-адресов на номер сети и номер узла, определенного классами A, B и C маски подсети имеют вид:

Таблица 2.5 – Маски подсети классов А, В и С

Класс

Двоичная форма

Десятичная форма

11111111 00000000 00000000 00000000 255.0.0.0
11111111 11111111 00000000 00000000 255.255.0.0
11111111 11111111 11111111 00000000 255.255.255.0

Поскольку каждый узел сети Интернет должен обладать уникальным IP-адресом, то, безусловно, важной является задача координации распределения адресов отдельным сетям и узлам. Такую координирующую роль выполняет Интернет Корпорация по распределению адресов и имен (The Internet Corporation for Assigned Names and Numbers, ICANN).

Естественно, что ICANN не решает задач выделения IP-адресов конечным пользователям и организациям, а занимается распределением диапазонов адресов между крупными организациями-поставщиками услуг по доступу к Интернету (Internet Service Provider), которые, в свою очередь, могут взаимодействовать как с более мелкими поставщиками, так и с конечными пользователями. Так, например функции по распределению IP-адресов в Европе ICANN делегировал Координационному Центру RIPE (RIPE NCC, The RIPE Network Coordination Centre, RIPE - Reseaux IP Europeens). В свою очередь, этот центр делегирует часть своих функций региональным организациям. В частности, российских пользователей обслуживает Региональный сетевой информационный центр "RU-CENTER".

В данной сети распределение IP-адресов производится с помощью протокола DHCP.

Протокол DHCP предоставляет три способа распределения IP-адресов:

1) Ручное распределение. При этом способе сетевой администратор сопоставляет аппаратному адресу (обычно MAC-адресу) каждого клиентского компьютера определенный IP-адрес. Фактически, данный способ распределения адресов отличается от ручной настройки каждого компьютера лишь тем, что сведения об адресах хранятся централизованно (на сервере DHCP), и поэтому их проще изменять при необходимости.

2) Автоматическое распределение. При данном способе каждому компьютеру на постоянное использование выделяется произвольный свободный IP-адрес из определенного администратором диапазона.

3) Динамическое распределение. Этот способ аналогичен автоматическому распределению, за исключением того, что адрес выдается компьютеру не на постоянное пользование, а на определенный срок. Это называется арендой адреса. По истечении срока аренды IP-адрес вновь считается свободным, и клиент обязан запросить новый (он, впрочем, может оказаться тем же самым).

IP-адреса в курсовом проекте взяты класса B и имеют маску 225.225.0.0. Выдаются протоколом DHCP с привязкой к МАС-адресу во избежание нелегальных подключений.

Таблица 2.6 – Назначение подсетей

Номер дома Число подъездов Номер этажа Адрес подсети
2 4 5
5 4 4
7 4 10
8 5 11

2.5 Организация выхода в Интернет через спутник

2.5.1 Виды спутникового Интернета

Двухсторонний спутниковый Интернет подразумевает приём данных со спутника и отправку их обратно также через спутник. Этот способ является очень качественным, так как позволяет достигать больших скоростей при передаче и отправке, но он является достаточно дорогим и требует получения разрешения на радиопередающее оборудование (впрочем, последнее провайдер часто берет на себя).

Односторонний спутниковый Интернет подразумевает наличие у пользователя какого-то существующего способа подключения к Интернету. Как правило, это медленный и/или дорогой канал (GPRS/EDGE, ADSL-подключение там, где услуги доступа в Интернет развиты плохо и ограничены по скорости и т. п.). Через этот канал передаются только запросы в Интернет. Эти запросы поступают на узел оператора одностороннего спутникового доступа (используются различные технологии VPN-подключения или проксирования трафика), а данные, полученные в ответ на эти запросы, передают пользователю через широкополосный спутниковый канал. Поскольку большинство пользователей в основном получает данные из Интернета, то такая технология позволяет получить более скоростной и более дешевый трафик, чем медленные и дорогие наземные подключения. Объем же исходящего трафика по наземному каналу (а значит и затраты на него) становится достаточно скромным (соотношение исходящий/входящий примерно от 1/10 при веб-серфинге, от 1/100 и лучше при загрузке файлов).

Естественно, использовать односторонний спутниковый Интернет имеет смысл тогда, когда доступные наземные каналы слишком дорогие и/или медленные. При наличии недорого и быстрого «наземного» Интернета спутниковый Интернет имеет смысл как резервный вариант подключения, на случай пропадания или плохой работы «наземного».

2.5.2 Оборудование

Ядро спутникового Интернета. Осуществляет обработку данных, полученных со спутника, и выделение полезной информации. Существует множество различных видов карт, но наиболее известны карты семейства SkyStar. Основными отличиями DVB-карт на сегодняшний день является максимальная скорость потока данных. Также к характеристикам можно отнести возможность аппаратного декодирования сигнала, программную поддержку продукта.

Существуют два типа спутниковых антенн:

· офсетные;

· прямофокусные.

Прямофокусные антенны представляют собой «блюдце» с сечением в виде окружности; приемник расположен прямо напротив его центра. Они сложнее офсетных в настройке и требуют подъёма на угол спутника, из-за чего могут «собирать» атмосферные осадки. Офсетные антенны за счёт смещения фокуса «тарелки» (точки максимального сигнала), устанавливаются практически вертикально, и потому проще в обслуживании. Диаметр антенны выбирается в соответствии с метеоусловиями и уровнем сигнала необходимого спутника.

Конвертер выполняет роль первичного преобразователя, который преобразовывает СВЧ-сигнал со спутника в сигнал промежуточной частоты. В настоящее время большинство конвертеров адаптировано к длительным воздействиям влаги и УФ-лучей. При выборе конвертера, в основном, следует обратить внимание на шумовой коэффициент. Для нормальной работы стоит выбирать конвертеры со значением этого параметра в промежутке 0,25 - 0,30 dB.

Для реализации двухстороннего способа к искомому оборудованию добавляется передающая карта и передающий конвертер.

2.5.3 Программное обеспечение

Существует два взаимодополняющих подхода к реализации ПО для спутникового интернета.

В первом случае DVB-карта используется как стандартное сетевое устройство (но работающие только на приём), а для передачи используется VPN-туннель (многие провайдеры используют PPTP («Windows VPN»), либо OpenVPN на выбор клиента, в некоторых случаях используется IPIP-туннель), есть и другие варианты. При этом в системе отключается контроль заголовков пакетов. Запросный пакет уходит на туннельный интерфейс, а ответ приходит со спутника (если не отключить контроль заголовков, система посчитает пакет ошибочным (в случае Windows - не так)). Данный подход позволяет использовать любые приложения, но имеет большую задержку. Большинство доступных в СНГ спутниковых провайдеров (SpaceGate (Ителсат), PlanetSky, Raduga-Internet, SpectrumSat) поддерживают данный метод.

Второй вариант (иногда используется совместно с первым): использование специального клиентского ПО, которое за счёт знания структуры протокола позволяет ускорять получение данных (например, запрашивается веб-страница, сервер у провайдера просматривает её и сразу, не дожидаясь запроса, посылает и картинки с этой страницы, считая, что клиент их все равно запросит; клиентская часть кеширует такие ответы и возвращает их сразу). Такое программное обеспечение со стороны клиента обычно работает как HTTP и Socks-прокси. Примеры: Globax (SpaceGate + другие по запросу), TelliNet (PlanetSky), Sprint (Raduga), Slonax (SatGate).

В обоих случаях возможно «расшаривание» трафика по сети (в первом случае иногда даже можно иметь несколько разных подписок спутникового провайдера и разделять тарелку за счёт особой настройки машины с тарелкой (требуется Linux или FreeBSD, под Windows требуется программное обеспечение сторонних производителей)).

Некоторые провайдеры (SkyDSL) в обязательном порядке используют своё программное обеспечение (выполняющее роль и туннеля, и прокси), часто также выполняющие клиентский шейпинг и не дающее расшаривать спутниковый интернет между пользователями (также не дающие возможности использовать в качестве ОС что либо отличное от Windows).

2.5.4 Преимущества и недостатки

Можно выделить следующие плюсы спутникового Интернета:

· стоимость трафика в часы наименьшей загрузки емкости

· независимость от наземных линий связи (при использовании GPRS или WiFi в качестве запросного канала)

· большая конечная скорость (приём)

· возможность просмотра спутникового ТВ и «рыбалки со спутника»

· возможность свободного выбора провайдера

Недостатки:

· необходимость покупки специального оборудования

· сложность установки и настройки

· в общем случае более низкая надежность по сравнению с наземным подключением (большее количество компонентов, необходимых для бесперебойной работы)

· наличие ограничений (прямая видимость спутника) по установке антенны

· высокий ping (задержка между отсылкой запроса и приходом ответа). В некоторых ситуациях это критично. Например при работе в интерактивном режиме Secure Shell и X11 а также во многих многопользовательских онлайновых системах (та же SecondLife не может вообще работать через спутник, шутер Counter Strike,Call of Duty - работает с проблемами и т. п.)

· при наличии хотя бы псевдоанлимитных тарифных планов (вроде «2000 рублей за 40 Gb на 512 кбит/с дальше - анлим но 32 кбит/c» - ТП Актив-Мега, ЭрТелеком, Омск) наземный интернет уже становится дешевле. При дальнейшем развитии кабельной инфраструктуры стоимость наземного трафика будет стремиться к нулю, при этом стоимость спутникового трафика жестко ограничена себестоимостью запуска спутника и её снижения не планируется.

· при работе через некоторых операторов у вас будет не российский IP-адрес (SpaceGate украинский, PlanetSky - кипрский, SkyDSL - Германский) в результате чего сервисы, которые используют для каких-то целей (например, пускаем только из РФ) определение страны пользователя, будут работать некорректно.

· программная часть - не всегда "Plug and Play", в некоторых (редких) ситуациях могут быть сложности и тут все зависит от качества техподдержки оператора.

В курсовом проекте будет использоваться двусторонний спутниковый интернет. Это позволит достигать высоких скоростей передачи данных и качественную передачу пакетов, но повысит расходы на реализацию проекта.


3. Безопасность при работе на высоте

Работами на высоте считаются все работы, которые выполняются на высоте от 1,5 до 5 м от поверхности грунта, перекрытия или рабочего настила, над которым производятся работы с монтажных приспособлений или непосредственно с элементов конструкций, оборудования, машин и механизмов, при их эксплуатации, монтаже и ремонте.

К работам на высоте допускаются лица, достигшие 18 лет, имеющие медицинское заключение о допуске к работам на высоте, прошедшие обучение и инструктаж по технике безопасности и получившие допуск к самостоятельной работе.

Работы на высоте должны выполняться со средств подмащивания (лесов, подмостей, настилов, площадок, телескопических вышек, подвесных люлек с лебедками, лестниц и других аналогичных вспомогательных устройств и приспособлений), обеспечивающих безопасные условия работы.

Все средства подмащивания, применяемые для организации рабочих мест на высоте, должны находиться на учете, иметь инвентарные номера и таблички с указанием даты проведенных и очередных испытаний.

Устройство настилов и работа на случайных подставках (ящиках, бочках и т.п.) запрещается.

Контроль за состоянием средств подмащивания должен осуществляться лицами из числа ИТР, которые назначаются распоряжением по предприятию (нефтебазе).

Работники всех специальностей для выполнения даже кратковременных работ на высоте с лестниц должны обеспечиваться предохранительными поясами и, при необходимости, защитными касками.

Предохранительные пояса, выдаваемые рабочим, должны иметь бирки с отметкой об испытании.

Пользоваться неисправным предохранительным поясом или с просроченным сроком испытания запрещается.

Работа на высоте производится в дневное время.

В аварийных случаях (при устранении неполадок), на основании приказа администрации, работы на высоте в ночное время производить разрешается с соблюдением всех правил безопасности под контролем ИТР. В ночное время место работы должно быть хорошо освещено.

В зимнее время, при выполнении работ на открытом воздухе, средства подмащивания должны систематически очищаться от снега и льда и посыпаться песком.

При силе ветра 6 баллов (10-12 м/сек) и более, при грозе, сильном снегопаде, гололедице работы на высоте на открытом воздухе не разрешаются.

Нельзя самовольно перестраивать настилы, подмости и ограждения.

Электропровода, расположенные ближе 5 м от лестниц (подмостей), требуется оградить или обесточить на время выполнения работ.

Рабочие обязаны выполнять порученную работу, соблюдая требования охраны труда, изложенные в настоящей инструкции.

За нарушение требований инструкции, относящихся к выполняемой ими работе, рабочие несут ответственность в порядке, установленном Правилами внутреннего распорядка.

Одновременное производство работ в 2-х и более ярусов по вертикали запрещается.

Запрещается складывать инструмент у края площадки, бросать его и материалы на пол или на землю. Инструмент должен храниться в специальной сумке или ящике.

Запрещается подбрасывание каких-либо предметов для подачи работающему наверху. Подача должна производиться при помощи верёвок, к середине которых привязываются необходимые предметы. Второй конец верёвки должен находиться в руках у стоящего внизу работника, который удерживает поднимаемые предметы от раскачивания.

Работающий на высоте должен вести наблюдение за тем, чтобы внизу под его рабочим местом, не находились люди.

При использовании приставных лестниц и стремянок запрещается:

· работать на неукреплённых конструкциях и ходить по ним, а также перелезать через ограждения;

· работать на двух верхних ступенях лестницы;

· находиться двум рабочим на лестнице или на одной стороне лестницы-стремянки;

· перемещаться по лестнице с грузом или с инструментом в руках;

· применять лестницы со ступеньками нашитыми гвоздями;

· работать на неисправной лестнице или на ступеньках облитых скользкими нефтепродуктами;

· наращивать лестницы по длине, независимо от материала, из которого они изготовлены;

· стоять или работать под лестницей;

· устанавливать лестницы около вращающихся валов, шкивов и т.п.;

· производить работы пневматическим инструментом;

· производить электросварочные работы.


4. Экономические затраты на построение локальной сети

Данный курсовой проект подразумевает следующие экономические затраты.

Таблица 4.1 – Перечень экономических затрат*

Наименование Единицы измерения Кол-во

за ед. (руб.)

Сумма (руб)
Оптоволоконный кабель ЭКБ-ДПО 12 м 708,5 36 25506
Кабель FTP 4 пары кат.5e <бухта 305м> Exalan+ - бухта 25 5890 147250
Коммутатор D-Link DGS-3200-16 шт 2 13676 27352
Коммутатор D-Link DGS-3100-24 шт 5 18842 94210
Маршрутизатор D-link DFL-1600 шт 1 71511 71511
Сервер IBM System x3400 M2 7837PBQ шт 1 101972 101972
ИБП APC SUA2200I Smart-UPS 2200 230V шт 2 29025 58050
Коннекторы RJ-45 Пачка(100шт) 3 170 510
Коннекторы MT-RJ шт 16 280 4480
Шкаф серверный шт 1 2100 2100
Шкаф для маршрутизатора шт 1 1200 1200
Шкаф для коммутатора шт 7 1200 8400
Конвертер D-Link DMC-805G шт 16 2070 33120
Спутниковая антенна + DVB-карта + конвертер шт 1 19300 19300
Скобы 6мм Пачка (50 шт) 56 4 224
Всего 595185

Экономические затраты не включают стоимость монтажных работ. Кабели и коннекторы рассчитаны с запасом ~30%. Цены указанны на момент создания курсового проекта с учетом НДС.

Заключение

В процессе разработки курсового проекта была создана ЛВС жилого района, имеющая выход на глобальную сеть. Был сделан обоснованный выбор типа сети на основе рассмотрения множества вариантов. Предусмотрено расширение сети для ее дальнейшего роста.

При курсовом проектировании использовались IP – адреса класса В, так как в сети имеется сто одна рабочая станция. Присвоение адресов осуществлялось протоколом DHCP. В качестве адреса подсети выступал номер подъезда.

В пункте расчета необходимого количества оборудования приведены данные и расчеты используемого оборудования. Стоимость разработки составляет 611481 рублей. Все рассчитанные параметры удовлетворяют критериям работоспособности сети.

Составлен краткий план сети, где указаны все характеристики используемого оборудования. В разделе «Безопасность при работе с электроинструментом» рассмотрены правила обращения с электроинструментом и техника безопасности при работе с ним.

В целом курсовой проект содержит все необходимые данные для построения локальной вычислительной сети.

Список использованных источников

1. http://www.dlink.ru;

2. http://market.yandex.ru;

3. http://www.ru.wikipedia.org.

4. Компьютерные сети. Учебный курс [Текст] / Microsoft Corporation. Пер. с анг. – М.: «Русская редакция» ТОО «Channel Trading Ltd.», 1998. – 696с.

5. Максимов, Н.В. Компьютерные сети: Учебное пособие [Текст] / Н.В. Максимов, И.И. Попов – М.: ФОРУМ: ИНФРА-М, 2005. – 336с.